Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:46:08.493Z Has data issue: false hasContentIssue false

Uptake, Translocation, and Metabolism in Alfalfa (Medicago sativa) Selected for Enhanced Tolerance to Terbacil

Published online by Cambridge University Press:  12 June 2017

Michael. P Anderson
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078
Curtis Bensch
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078
Jimmy F. Stritzke
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078
John L. Caddel
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078

Abstract

Terbacil tolerance was investigated in field-selected alfalfa strain ‘OK 182.’ Growth response studies indicated a 78% increase in tolerance over the unselected parental cultivar ‘Cimarron.’ Photosynthetic electron transport was inhibited similarly in both cultivars when isolated thylakoids were exposed to a wide range of terbacil concentration indicating that tolerance was not due to reduced sensitivity at the site-of-action. ‘OK 182’ took up an average of 22% less 14C-terbacil over the 6-d labeling period. A similar proportion of total radiolabel was translocated in both strains indicating that differential translocation was not a factor in the tolerance mechanism. Once in the leaves, terbacil was rapidly metabolized to a glucosidic conjugate by both strains. Terbacil and total concentration of metabolites in leaf tissues were 17% and 33% lower in ‘OK 182’ than in ‘Cimarron,’ respectively. Enhanced tolerance to terbacil in ‘OK 182’ was attributed to decreased terbacil uptake.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Anderson, M. P., Bensch, C. N., and Stritzke, J. F. 1994. A rapid assay for the determination of site-of-action resistance in photosystem II inhibiting herbicides, Weed Sci. 42:517522.CrossRefGoogle Scholar
2. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris . Plant Physiol. 24:15.CrossRefGoogle ScholarPubMed
3. Barrentine, J. L. and Warren, G. G. 1970. Selective action of terbacil on peppermint and ivyleaf morningglory. Weed Sci. 18:373377.CrossRefGoogle Scholar
4. Beste, C. E. 1989. Terbacil selectivity for watermelon. British Crop Prot. Conf. 3:10451048.Google Scholar
5. Beversdorf, W. D. and Kott, L. S. 1987. Development of triazine resistance in crops by classical plant breeding. Weed Sci. 35:911.CrossRefGoogle Scholar
6. Boerboom, C. M., Wyse, D. L., and Somer, D. A. 1990. Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus). Weed Sci. 38:463467.CrossRefGoogle Scholar
7. Boydston, R. A. and Al-Khatib, K. 1992. Terbacil and bromacil cross resistance in powell amaranth (Amaranthus powellii). Weed Sci. 40:513516.CrossRefGoogle Scholar
8. Caddel, J. L., Strizke, J. F., Anderson, M. P., and Bensch, C. 1992. Alfalfa germplasm with resistance to terbacil. Page 162165 in Proc. Forage and Grassland Conf. Google Scholar
9. Cottingham, C. K. and Hatzios, K. K. 1992. Basis of differential tolerance of two corn hybrids (Zea mays) to metolachlor. Weed Sci. 40:359363.CrossRefGoogle Scholar
10. Doohan, D. J., Monaco, T. J., and Sheets, T. J. 1992. Effect of field violet (Viola arvensis) growth stage on uptake, translocation and metabolism of terbacil. Weed Sci. 40:180183.CrossRefGoogle Scholar
11. Faulkner, J. S. 1982. Breeding herbicide tolerant crops cultivars by conventional methods. Pages 235256 in Lebaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
12. Harrison, H. F. 1992. Developing herbicide-tolerant crop cultivars. Weed Technol. 6:613614.CrossRefGoogle Scholar
13. Gardiner, J. A., Rhodes, R. C., Adams, J. B. Jr. and Sobocensk, E. J. 1969. Synthesis and studies with [2-14C] labeled bromacil and terbacil. J. Agric. Food Chem. 17:980986.CrossRefGoogle ScholarPubMed
14. Gardiner, J. A. 1981. Substituted uracil herbicides. Pages 293321 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Marcel Dekker, New York.Google Scholar
15. Gawronski, S. W., Haderlie, L. C., and Stark, J. C. 1986. Metribuzin absorption and translocation in two barley (Hordeum vulgare) cultivars. Weed Sci. 34:491495.CrossRefGoogle Scholar
16. Genez, A. L. and Monaco, T. J. 1983. Metabolism of terbacil in strawberry (Fragaria ananassa) and goldenrod (Solidago fistulosa). Weed Sci. 31:221225.CrossRefGoogle Scholar
17. Jordan, L. S., Zurqiyah, A. A., Clerx, W. A., and Leasch, J. F. 1975. Metabolism of terbacil in orange seedlings. Arch. Environ. Contain. Toxicol. 3:258277.CrossRefGoogle ScholarPubMed
18. Kyle, D. J. 1985. The 32,000 Dalton QB protein of photosystem II. Photochem. Photobiol. 41:107116.CrossRefGoogle Scholar
19. Radosevich, S. R., Steinback, K. E., and Arntzen, C. 1979. Effects of photosystem II inhibitors on thylakoid membranes of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 27:216218.CrossRefGoogle Scholar
20. Ray, B. R., Wilcox, M., Wheeler, W. B., and Thompson, N. P. 1971. Translocation of terbacil in purple nutsedge. Weed Sci. 19:306307.CrossRefGoogle Scholar
21. Rhodes, R. C. 1977. Metabolism of [2-14C] terbacil in alfalfa. J. Agric. Food Chem. 25:10661068.CrossRefGoogle Scholar
22. Runyan, T. J., McNeil, W. K., and Peeper, T. F. 1982. Differential tolerance of wheat (Triticum aestivum) cultivars to metribuzin. Weed Sci. 30:9497.CrossRefGoogle Scholar
23. Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose response curves and statistical models. Pages 2955 in Streibig, J. C. and Kudsk, P., eds., Herbicide Bioassays, CRC Press, Boca Raton, FL.Google Scholar
24. Walker, A. and Featherstone, R. M. 1973. Adsorption and translocation of atrazine and linuron by plants with implications concerning linuron selectivity. J. of Exp. Botany 24:450458.CrossRefGoogle Scholar
25. Wright, T. J. and Rieck, C. E. 1973. Differential butylate injury to corn hybrids. Weed Sci. 21:194196.CrossRefGoogle Scholar
26. Wych, R. and Rains, D. W. 1978. Simultaneous measurement of nitrogen fixation estimated by acetylene-ethylene assay and nitrate absorption by soybeans. Plant Physiol. 62:443448.CrossRefGoogle ScholarPubMed