Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:50:30.796Z Has data issue: false hasContentIssue false

Use of a Mathematical Model to Determine the Fate of Atrazine in Barley (Hordeum vulgare) Plants

Published online by Cambridge University Press:  12 June 2017

Sylvie Raynaud
Affiliation:
G.E.R.A.P., I.U.T., Université de Perpignan Chemin de la Passio Vella–66025 PERPIGNAN FRANCE
Jean Bastide
Affiliation:
G.E.R.A.P., I.U.T., Université de Perpignan Chemin de la Passio Vella–66025 PERPIGNAN FRANCE
Camille Coste
Affiliation:
G.E.R.A.P., I.U.T., Université de Perpignan Chemin de la Passio Vella–66025 PERPIGNAN FRANCE

Abstract

A model of the pharmacokinetics of atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine] in barley (Hordeum vulgare L. ‘Escourgnon’) plants has been described. Uptake of atrazine conforms to a first-order kinetic model. Roots play a small role as a sink for atrazine. Metabolism of the herbicide conforms to a second-order kinetic model. Using this model, the amount of atrazine in leaves can be evaluated at any time if the concentration of herbicide in solution is known.

Type
Special Topics
Copyright
Copyright © 1985 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Angot, A. 1949. Compléments de mathématiques. Page 403. Editions de la revue d'optique. Collection Technique et Scientifique du CNET (Centre National d'études des télécommunications).Google Scholar
2. Barzegar-Jalali, M. 1983. On the calculation of absorption rate constant of linear one compartment open models using peek blood level or peak urinary excretion rate and post-absorptive data. Int. J. Pharm. 13:99101.CrossRefGoogle Scholar
3. Barzegar-Jalali, M. 1983. Some method for estimating absorption rate constant of linear one compartment open models. Int. J. Pharm. 13:103107.Google Scholar
4. Barzegar-Jalali, M. 1983. A theoretical justification for the superposition principle. Int. J. Pharm. 13:239240.Google Scholar
5. Barzegar-Jalali, M. and Toomanian, M. 1982. Theoretical consideration for the cases where absorption rate constant approaches elimination rate constant in the linear one compartment open models. Int. J. Pharm. 12:351354.Google Scholar
6. Bialer, M., Hussen, Z., Herishanu, Y., and Melnik, Y. 1983. An alternative method for calculating absorption and elimination rate constants in first order processes:application to valproic acid. Int. J. Pharm. 16:285294.Google Scholar
7. Briggs, G., Bromilow, R. H., and Evans, A. A. 1982. Relationships between lipophilicity and root uptake and translocation of nonionized chemicals by barley. Pestic. Sci. 13:495504.Google Scholar
8. Briggs, G., Bromilow, R. H., Evans, A., and Williams, M. 1983. Relationships between lipophilicity and the distribution of nonionized chemicals in barley shoots following uptake by roots. Pestic. Sci. 14:492500.Google Scholar
9. Castelfranco, P., Foy, C. L., and Deutsch, D. B. 1961. Non-enzymatic detoxification of 2-chloro-4,5-bis(ethylamino)-s-triazine by extracts of Zea mays . Weeds. 9:580591.CrossRefGoogle Scholar
10. Endrenyi, L. and Kwong, H.F.H. 1981. Design of experiments for estimating enzyme and pharmacokinetic parameters. Pages 89103 in Endrenyi, L. ed. Kinetic Data analysis: Design and analysis of enzyme and pharmacokinetic experiments. Plenum Press, New York.CrossRefGoogle Scholar
11. Ford, M. G., Greenwood, R., and Thomas, P. J. 1981. The kinetics of insecticide action. Part I: The properties of a mathematical model describing insect pharmacokinetics. Pestic. Sci. 12:175198.Google Scholar
12. Ford, M. G., Greenwood, R., and Thomas, P. J. 1981. The kinetics of insecticide action. Part II. The relationship between the pharmacokinetics of substituted benzyl (1 RS)-cis, trans-chrysanthemates and their relative toxicities to Mustard Beetles (Phaedon cochleariae Fab.). Pestic. Sci. 12:265284.CrossRefGoogle Scholar
13. Guddewar, M. B. and Dauterman, W. C. 1979. Purification and properties of a glutathione-S-transferase from corn which conjugates s-triazine herbicides. Phytochemistry. 18:735740.Google Scholar
14. Gysin, A. and Knusli, E. 1960. Chemistry and herbicidal properties of triazine derivatives. Adv. Pest. Control Res. 3:289358.Google Scholar
15. Hamilton, R. H. and Moreland, D. E. 1962. Simazine degradation by corn seedlings. Science. 135:373374.Google Scholar
16. Jensen, K. 1982. The roles of uptake, translocation, and metabolism in the differential intra-specific responses to herbicides. Pages 133161 in LeBaron, H. M. and Gressel, J., eds. Herbicide resistance in plants. John Wiley and Sons, New York.Google Scholar
17. Jungers, J. C., Balaceanu, J. C., Coussemant, F., Eschard, F., Giraud, A., Hellin, M., Leprince, P., and Limido, G. E. 1958. Cinétique chimique appliquée. Pages 166171. Société des éditions. Technip, Paris.Google Scholar
18. Metzler, C. M. 1981. Estimation of pharmacokinetic parameters: statistical considerations. Pharmacol. Ther. 13:543556.CrossRefGoogle ScholarPubMed
19. Nadkarni, M. V., Goldenthal, E. I., and Smith, P. K. 1954. The distribution of radioactivity following administration of triethylenimino-s-triazine-C14 in tumor bearing and control mice. Cancer Res. 14:559.Google Scholar
20. Pearlman, W. M. and Banks, C. K. 1948. Substituted chlorodiamino-s-triazines. J. Am. Chem. Soc. 70:3726.Google Scholar
21. Renault, R. 1955. Chimie végétale. Pages 207208 in Chimie Agricole. Tome I. Eyrolles et Gauthier Villars. Paris.Google Scholar
22. Shimabukuro, R. H. 1967. Atrazine metabolism and herbicidal selectivity. Plant Physiol. 42:12691276.CrossRefGoogle ScholarPubMed
23. Shimabukuro, R. H. 1968. Atrazine metabolism in resistant corn and sorghum. Plant Physiol. 43:19251930.Google Scholar
24. Shimabukuro, R. H., Frear, D. S., Swanson, H. R., and Walsh, W. C. 1971. Glutathione conjugation an enzymatic basis for atrazine resistance in corn. Plant Physiol. 47:1014.Google Scholar
25. Shimabukuro, R. H., Lamoureux, G. L., and Frear, D. S. 1973. Pesticide metabolism in plants. Reactions and mechanisms. Pages 2166 in Matsumura, and Murti, K. eds. Biodegradation of pesticides. Plenum Press, New York.Google Scholar
26. Shone, M.G.T. and Wood, A. V. 1974. A comparison of the uptake and translocation of some organic herbicides and systemic fungicide by barley. I. Absorption in relation to physicochemical properties. J. Exp. Bot. 25:390400.CrossRefGoogle Scholar
27. Shone, M.G.T., Barlett, B. O., and Wood, A. V. 1974. A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley. II. Relationship between uptake by roots and translocation to shoots. J. Exp. Bot. 25:401409.CrossRefGoogle Scholar
28. Van de Waterbeemd, J. Th. M., Jansen, A.C.A., and Gerritsma, K. W. 1980. The determination of transport rate constants. Method and apparatus. Pharm. Weekbl. 2:7380.Google Scholar