Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T12:08:40.048Z Has data issue: false hasContentIssue false

Where are the bioherbicides?

Published online by Cambridge University Press:  20 January 2017

Steven G. Hallett*
Affiliation:
Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-1155; halletts@purdue.edu

Abstract

Since commercialization of Collego™ and Devine™ in the early 1980s, there has been a small but consistent research effort in the area of bioherbicides. The bioherbicide approach has promised effective weed management in cropping systems where the classical approach (using exotic natural enemies) is largely unsuitable. The overriding principle of the bioherbicide approach has been that a host-specific, coevolved natural enemy can be used as a bioherbicide when applied in simple formulations at inundative levels; however, two decades of research has effectively disproven this principle. Although research has revealed weaknesses in the bioherbicide approach, it has also revealed potential in a number of areas. A number of niche situations will remain in which host-specific plant pathogens can be developed as bioherbicides, such as for parasitic weeds and narcotic plants, but more research should be conducted with virulent, broad host range organisms, and more effort should be devoted to developing techniques for the cultural and genetic enhancement of bioherbicidal organisms.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbas, H. K. and Boyette, C. D. 2000. Solid substrate formulations of the mycoherbicide Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) control. Biocontrol Sci. Technol 10:291300.Google Scholar
Abbas, H. K., Boyette, C. D., and Hoagland, R. E. 1995. Phytotoxicity of Fusarium, other fungal isolates, and of the phytotoxins fumonisin, fusaric acid and moniliformin to jimsonweed. Phytoprotection 76:1725.Google Scholar
Abbas, H. K. and Duke, S. O. 1995. Phytotoxins from plant pathogens as potential herbicides. J. Toxicol. Toxin Rev 14:523543.Google Scholar
Abbas, H. K., Johnson, B. B., Shier, W. T., Tak, H., Jarvis, B. B., and Boyette, C. D. 2002. Phytotoxicity and mammalian toxicity of macrocyclic tricothecene mycotoxins from Myrothecium verrucaria . Phytochemistry 59:309313.Google Scholar
Abbas, H. K., Tak, H., Boyette, C. D., Shier, W. T., and Jarvis, B. B. 2001. Macrocyclic tricothecenes are undetectable in kudzu (Puereria montana) plants treated with a high-producing isolate of Myrothecium verrucaria . Phytochemistry 58:269276.Google Scholar
Altman, J., Neate, S., and Rovira, A. D. 1990. Herbicide-pathogen interactions and mycoherbicides as alternative strategies for weed control. Pages 240259 in Hoagland, R. E. ed. Microbes and Microbial Products as Herbicides. ACS Symposium Series 439. Washington, DC: ACS.Google Scholar
Amsellem, Z., Cohen, B. A., and Gressel, J. 2002. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat. Biotechnol 20:10351039.CrossRefGoogle Scholar
Amsellem, Z., Sharon, A., Gressel, J., and Quimby, P. C. Jr. 1990. Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathology 80:925929.Google Scholar
Amsellem, Z., Zidack, N. K., Quimby, P. C. Jr., and Gressel, J. 1999. Long-term dry preservation of viable mycelium of two mycoherbicidal organisms. Crop Prot 18:643649.CrossRefGoogle Scholar
Anderson, K. I. and Hallett, S. G. 2004. Herbicidal spectrum and activity of Myrothecium verrucaria . Weed Sci 52:623627.Google Scholar
Auld, B. A. 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Prot 12:477479.Google Scholar
Auld, B. A. and Morin, L. 1995. Constraints in the development of bioherbicides. Weed Technol 9:638652.Google Scholar
Auld, B. A., Say, M. M., Ridings, H. I., and Andrews, J. 1990. Field applications of Colletotrichum orbiculare to control Xanthium spinosum . Agric. Ecosyst. Environ 32:315323.Google Scholar
Bailey, B. A., Apel-Birkhold, P. C., Akingbe, O. O., Ryan, J. L., O'Neill, N. R., and Anderson, J. D. 2000. Nep 1 protein from Fusarium oxysporum enhances biological control of opium poppy by Pleospora papaveracea . Phytopatholology 90:812818.CrossRefGoogle Scholar
Bailey, B. A., Hebbar, K. P., Lumsden, R. D., O'Neill, N. R., and Lewis, J. A. 2004. Production of Pleospora papaveracea biomass in liquid culture and its infectivity on opium poppy (Papaver somniferum). Weed Sci 52:9197.Google Scholar
Bailey, B. A., Hebbar, K. P., Strem, M., Lumsden, R. D., Darlington, L. C., Connick, W. J. Jr., and Daigle, D. J. 1996. Formulations of Fusarium oxysporum f.sp. erythroxyli for biocontrol of Erythroxylum coca var. coca . Weed Sci 46:682689.CrossRefGoogle Scholar
Bailey, B. A., Jennings, J. C., and Anderson, J. D. 1997. The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Can. J. Microbiol 43:4555.Google Scholar
Barbosa, P. ed. 1998. Conservation Biological Control. San Diego, CA: Academic. 396 p.Google Scholar
Bateman, R. 1999. Delivery systems and protocols for biopesticides. Pages 509528 in Hall, F. R. and Menn, J. J. eds. Biopesticides: Use and Delivery. Totowa, NJ: Humana.Google Scholar
Bever, J. D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75:19651967.Google Scholar
Bourdot, G. W., Saville, D. J., Hurrell, G. A., Harvey, I. C., and De Jong, M. D. 2000. Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: sclerotium survival. Biocontrol Sci. Technol 10:411425.Google Scholar
Bowers, R. C. 1986. Commercialization of Collego—an industrialist's view. Weed Sci 34:(Suppl. 1). 2425.Google Scholar
Boyetchko, S. M. 1996. Impact of soil microorganisms on weed biology and ecology. Phytoprotection 77:4156.CrossRefGoogle Scholar
Boyetchko, S. M. 1997. Principles of biological weed control with microorganisms. Hortscience 32:201205.CrossRefGoogle Scholar
Boyette, C. D. 1994. Unrefined corn oil improves the mycoherbicidal activity of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) control. Weed Technol 8:526529.Google Scholar
Boyette, C. D., Quimby, P. C. Jr., Bryson, C. T., Egley, G. H., and Fulgham, F. E. 1993. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci 41:497500.Google Scholar
Boyette, C. D., Quimby, P. C. Jr., Caesar, A. J., Birdsall, J. L., Connick, W. J. Jr., Daigle, D. J., Jackson, M. A., Egley, G. H., and Abbas, H. K. 1996. Adjuvants, formulations and spraying systems for improvement of mycoherbicides. Weed Technol 10:637644.Google Scholar
Boyette, C. D., Walker, H. L., and Abbas, H. K. 1999. Biological control of kudzu (Peuraria montana) with an endemic fungal pathogen. Proc. South. Weed Sci. Soc 52:237.Google Scholar
Brière, S. C., Watson, A. K., and Hallett, S. G. 2000. Oxalic acid production and mycelial biomass yield of Sclerotinia minor for the formulation enhancement of a granular turf bioherbicide. Biocontrol Sci. Technol 10:281289.Google Scholar
Brière, S. C., Watson, A. K., Paulitz, T. C., and Hallett, S. G. 1995. First report of a Phoma sp. on common ragweed in North America. Plant Dis 79:968.Google Scholar
Chacko, R. J., Weidemann, G. J., TeBeest, D. O., and Correll, J. C. 1993. The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides . Biol. Control 4:382389.Google Scholar
Chapple, A. C. and Bateman, R. P. 1997. Application systems for microbial pesticides: necessity not novelty. Br. Crop Prot. Counc. Monogr 89:181190.Google Scholar
Charudattan, R. 1988. Inundative control of weeds with indigenous fungal pathogens. Pages 86110 in Burge, M. N. ed. Fungi in Biological Control Systems. Manchester, U.K.: Manchester University Press.Google Scholar
Charudattan, R. 2001. Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agroecology. BioControl 46:229260.Google Scholar
Charudattan, R., Prange, V. J., and DeValerio, J. T. 1996. Exploration of the use of the “bialaphos genes” for improving bioherbicide efficacy. Weed Technol 10:625636.CrossRefGoogle Scholar
Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. ACS Symp. Ser 524:87100.Google Scholar
Ciotola, M., DiTommaso, A., and Watson, A. K. 2000. Chlamydospore production, inoculation methods and pathogenicity of Fusarium oxysporum M12-4A, a biocontrol for Striga hermonthica . Biocontrol Sci. Technol 10:129145.Google Scholar
Ciotola, M., Jabaji-Hare, S., Leclerc-Potvin, C., Taylor, G., and Watson, A. K. 2001. Molecular characterization of Fusarium oxysporum strains attacking Striga hermonthica in Africa. Proceedings of the 7th International Parasitic Weed Symposium, June 5–8, 2001, Nantes, France.Google Scholar
Ciotola, M., Watson, A. K., and Hallett, S. G. 1996. Discovery of an isolate of Fusarium oxysporum with potential to control Striga hermonthica in Africa. Weed Res 35:303309.Google Scholar
Cisar, C. R., Thornton, A. B., and TeBeest, D. O. 1996. Isolates of Colletotrichum gloeosporioides (teleomorph: Glomerella cingulata) with different host specificities mate on northern jointvetch. Biol. Control 7:7583.Google Scholar
Cohen, B. A., Amsellem, Z., Maor, R., Sharon, A., and Gressel, J. 2002. Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 92:590596.CrossRefGoogle ScholarPubMed
Connick, W. J. Jr., Boyette, C. D., and Nickle, W. R. 1992. New pesta granular formulations containing mycoherbicides and entomogenous nematodes. Abstr. Pap. Am. Chem. Soc 203:105.Google Scholar
Connick, W. J. Jr., Daigle, D. J., and Quimby, P. C. Jr. 1991. An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol 5:442444.Google Scholar
Cook, W. 2001. Buzzword. Boalsburg, PA: Public Policy.Google Scholar
Crawley, M. J. 1989. The successes and failures of weed biocontrol using insects. Biocontrol News Inf 10:213223.Google Scholar
Daigle, D. J. and Connick, W. J. Jr. 1990. Formulation and application technology for microbial weed control. Pages 288304 in Hoagland, R. E. ed. Microbes and Microbial Products as Herbicides. ACS Symposium Series 439. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Daigle, D. J., Connick, W. J. Jr., Quimby, P. C. Jr., Evans, J., Trask-Morrell, B., and Fulgham, F. E. 1990. Invert emulsion: carrier and water source for the mycoherbicide, Alternaria cassiae . Weed Technol 4:327331.Google Scholar
Dausch, A. L., Watson, A. K., and Jabaji-Hare, S. H. 2003. Detection of the biocontrol agent Colletotrichum coccodes (183088) from the target weed velvetleaf and from soil by strain-specific PCR markers. J. Microbiol. Methods 55:5164.Google Scholar
De Jong, M. D., Aylor, D. E., and Bourdot, G. W. 1999. A methodology for risk analysis of pluvivorous fungi in biological weed control: Sclerotinia sclerotiorum as a model. Biocontrol 43:397419.Google Scholar
De Jong, M. D., Wagenmakers, P. S., and Goudriaan, J. 1991. Modelling the escape of Chondrostereum purpureum spores from a larch forest with biological control of Prunus serotina . Neth. J. Plant Pathol 97:5561.Google Scholar
Duke, S. O. 1986. Naturally occurring chemical compounds as herbicides. Rev. Weed Sci 2:1544.Google Scholar
Duke, S. O. and Abbas, H. K. 1995. Natural products with potential use as herbicides. ACS Symp. Ser 582:348362.Google Scholar
Duke, S. O., Baerson, S. R., Dayan, F. E., Kagan, I. A., Miguel, A., and Scheffler, B. 2001. Biocontrol of weeds with the biocontrol agents. Pages 96104 in Vurro, M., Gressel, J., Butt, T., Harman, G., Leger, R. St., Nuss, D., and Pilgeram, A. eds. Enhancing Biocontrol Agents and Handling Risks. Amsterdam, Netherlands: IOS Press.Google Scholar
Egley, G. H. and Boyette, C. D. 1994. Water-corn emulsion enhances conidia germination and mycoherbicidal activity of Colletotrichum truncatum . Weed Sci 43:312317.Google Scholar
Egley, G. H., Hanks, J. E., and Boyette, C. D. 1993. Invert emulsion droplet size and mycoherbicidal activity of Colletotrichum truncatum . Weed Technol 7:417424.Google Scholar
Farr, D. F. and Castlebury, L. A. 2001. Septoria epambrosiae sp. nov. on Ambrosia artemisiifolia . Sydowia 53:8192.Google Scholar
Fellows, G. M. and Roeth, F. W. 1992. Factors influencing shattercane (Sorghum bicolor) seed survival. Weed Sci 40:434440.Google Scholar
Fravel, D. R., Marios, J. J., and Connick, W. J. Jr. 1984. Encapsulation of potential biocontrol agents in sodium alginate aggregates. Phytopathology 74:756.Google Scholar
Greaves, M. P., Bailey, J. A., and Hargreaves, J. A. 1989. Mycoherbicides: opportunities for genetic manipulation. Pestic. Sci 26:93101.Google Scholar
Greaves, M. P., Holloway, P. J., and Auld, B. A. 1998. Formulation of microbial herbicides. Pages 203233 in Burges, H. D. ed. Formulation of Microbial Pesticides. Dordrecht, Netherlands: Kluwer Academic.Google Scholar
Greaves, M. P., Pring, R. J., and Lawrie, J. 2001. A proposed mode of action of oil-based formulations of a microbial herbicide. Biocontrol Sci. Technol 11:273281.Google Scholar
Greaves, M. P. and Sargent, J. A. 1986. Herbicide induced microbial invasion of plant roots. Weed Sci 34:(Suppl. 1). 5053.Google Scholar
Gressel, J. 1999. Tandem constructs: preventing the rise of “superweeds.”. Trends Biotechnol 17:361366.CrossRefGoogle ScholarPubMed
Gressel, J. 2001. Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends Biotechnol 19:149154.Google Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. London: Taylor & Francis.Google Scholar
Gressel, J. 2003. Enhancing microbiocontrol of weeds. ASM News 69:498502.Google Scholar
Gressel, J., Amsellem, Z., Warshawsky, A., Kampel, V., and Michaeli, D. 1996. Biocontrol of weeds: overcoming evolution for efficacy. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 31:399405.Google Scholar
Gressel, J. and Ehrlich, G. 2002. Universal inheritable barcodes for identifying organisms. Trends Plant Sci 7:542544.Google Scholar
Gressel, J., Michaeli, D., Kampel, V., Amsellem, Z., and Warshawsky, A. 2002. Ultralow calcium requirements of fungi facilitate use of calcium regulating agents to suppress host calcium-dependent defenses, synergizing infection by a mycoherbicide. J. Agric. Food Chem 50:63536360.Google Scholar
Gronwald, J. W., Plaisance, K. L., Ide, D. A., and Wyse, D. L. 2002. Assessment of Pseudomonas syringae pv. tagetes as a biocontrol agent for Canada thistle. Weed Sci 50:397404.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Simmons, F. W. 2002. Common waterhemp (Amaranthus rudis) management with soil-applied herbicides in soybean (Glycine max (L.) Merr). Crop Prot 21:277283.Google Scholar
Harper, J. L. 1990. Pests, pathogens and plant communities: an introduction. Pages 314 in Burdon, J. J. and Leather, S. R. eds. Pests, Pathogens and Plant Communities. Oxford, U.K.: Blackwell.Google Scholar
Hartzler, R. G. 1996. Velvetleaf (Abutilon theophrasti) population dynamics following a single year's seed rain. Weed Technol 10:581586.Google Scholar
Heap, I. 2004. The International Survey of Herbicide Resistant Weeds. Web page: www.weedscience.com. Accessed: October 11, 2004.Google Scholar
Hoagland, R. E. 1996. Chemical interactions with bioherbicides to improve efficacy. Weed Technol 10:651674.Google Scholar
Hoagland, R. E. 2001. Microbial allelochemicals and pathogens as bioherbicidal agents. Weed Technol 15:835857.Google Scholar
Hoke, D. and Drager, B. 2004. Calystegines in Calystegia sepium do not inhibit fungal growth and invertase activity but interact with plant invertase. Plant Biol 6:206213.Google Scholar
Hopen, H. J., Caruso, F. L., Bewick, T. A., Yarborough, D. E., and Smagula, J. M. 1997. Control of dodder in cranberry (Vaccinium macrocarpon) with a pathogen-based bioherbicide. Acta Hortic 446:427428.CrossRefGoogle Scholar
Howell, C. R. and Stipanovic, R. D. 1984. Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens . Phytopathology 74:13461349.CrossRefGoogle Scholar
Hutchinson, C. M. 1999. Trichoderma virens-inoculated composted chicken manure for biological weed control. Biol. Control 16:217222.CrossRefGoogle Scholar
Hynes, M. J. 1996. Genetic transformation of filamentous fungi. J. Genet 75:297311.Google Scholar
Jackson, M. A., Schisler, D. A., Slininger, P. J., Boyette, C. D., Silman, R. W., and Bothast, R. J. 1996. Fermentation strategies for improving the fitness of a bioherbicide. Weed Technol 10:645650.Google Scholar
Jones, R. W. and Hancock, J. G. 1987. Conversion of viridin to viridiol by viridian-producing fungi. Can. J. Microbiol 33:963966.Google Scholar
Julien, M. H. ed. 1992. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds. 3rd ed. Wallingford, U.K.: CABI.Google Scholar
Kennedy, A. C. 1997. Deleterious rhizobacteria and weed biocontrol. Pages 164177 in Andow, D. A., Ragsdale, D. W., and Nyvall, R. F. eds. Ecological Interactions and Biological Control. Boulder, CO: Westview.Google Scholar
Kerr, P. J., Leeuwen, B. H. V., Perkins, H., Holland, M. K., Gu, W., Jackson, R. J., Williams, C. K., and Robinson, A. J. 2001. Development of fertility control for wild rabbits in Australia using a viral-vectored immunocontraceptive. Pages 1427 in Vurro, M., Gressel, J., Butt, T., Harman, G., Leger, R. St., Nuss, D., and Pilgeram, A. eds. Enhancing Biocontrol Agents and Handling Risks. Amsterdam, Netherlands: IOS.Google Scholar
Kistler, H. C. 1991. Genetic manipulation of plant pathogenic fungi. in TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. Pp. 152170.Google Scholar
Kloepper, J. W. and Schroth, M. N. 1978. Promoting rhizobacteria on radishes. Proc. IV Int. Conf. Plant Pathogenic Bacteria 2:879882.Google Scholar
Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl 3:4252.Google Scholar
Kremer, R. J. and Kennedy, A. C. 1996. Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601609.Google Scholar
Lawrie, J., Greaves, M. P., Down, V. M., Western, N. M., and Jaques, S. J. 2002. Investigation of spray application of microbial herbicides using Alternaria alternata on Amaranthus retroflexus . Biocontrol Sci. Technol 12:469479.Google Scholar
Léger, C., Hallett, S. G., and Watson, A. K. 2001. Performance of Colletotrichum dematium for the control of fireweed (Epilobium angustifolium) improved with formulation. Weed Technol 15:437446.Google Scholar
Lévesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol 30:579602.Google Scholar
Li, J. and Kremer, R. J. 2000. Rhizobacteria associated with weed seedlings in different cropping systems. Weed Sci 48:734741.Google Scholar
Liebman, M. and Davis, A. S. 2000. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:2747.Google Scholar
Lindquist, J. L., Maxwell, B. D., Buhler, D. D., and Gunsolus, J. L. 1995. Velvetleaf (Abutilon theophrasti) recruitment, survival, seed production and interference in soybean (Glycine max). Weed Sci 43:226232.Google Scholar
Marino, P. C., Gross, K. L., and Landis, D. A. 1997. Weed seed loss due to predation in Michigan maize fields. Agric. Ecosyst. Environ 66:189196.Google Scholar
Marley, P. S., Aba, D. A., Shebayan, J. A. Y., Musa, R., and Sanni, A. 2004. Integrated management of Striga hermonthica in sorghum using a mycoherbicide and host plant resistance in the Nigerian Sudano-Sahelian savanna. Weed Res 44:157162.Google Scholar
Masangkay, R. F., Paulitz, T. C., Hallett, S. G., and Watson, A. K. 1999. Factors influencing biological control of Sphenoclea zeylanica with Alternaria alternata f.sp. sphenocleae . Plant Dis 83:10191024.Google Scholar
McRae, C. F. and Auld, B. A. 1988. The influence of environmental factors on anthracnose of Xanthium spinosum . Phytopathology 78:11821186.Google Scholar
McWhorter, C. G., Fulgham, F. E., and Barrentine, W. L. 1988. An air-assist spray nozzle for applying herbicides in ultra-low volume. Weed Sci 36:118121.Google Scholar
Menalled, F. D., Marino, P. C., Renner, K. A., and Landis, D. A. 2000. Post-dispersal weed seed predation in Michigan crop fields as a function of agricultural landscape structure. Agric. Ecosyst. Environ 77:193202.Google Scholar
Miller, R. V., Ford, E. J., and Sands, D. C. 1989a. A nonsclerotial pathogenic mutant of Sclerotinia sclerotiorum . Can. J. Microbiol 35:517520.Google Scholar
Miller, R. V., Ford, E. J., Zidack, N. J., and Sands, D. C. 1989b. A pyrimidine auxotroph of Sclerotinia sclerotiorum for use in biological weed control. J. Gen. Microbiol 135:20852091.Google Scholar
Millhollon, R. W., Berner, D. K., Paxson, L. K., Jarvis, B. B., and Bean, G. W. 2003. Myrothecium verrucaria for control of annual morningglories in sugarcane. Weed Technol 17:276283.Google Scholar
Montazeri, M. and Greaves, M. P. 2002. Effects of nutrition on desiccation tolerance and virulence of Colletotrichum truncatum and Alternaria alternata conidia. Biocontrol Sci. Technol 12:173181.Google Scholar
Morin, L., Gianotti, A. F., and Lauren, D. R. 2000. Tricothecene production and Pathogenicity of Fusarium tumidum, a candidate bioherbicide for gorse and broom in New Zealand. Mycol. Res 104:993999.Google Scholar
Morin, L., Gianotti, A. K., Barker, R., and Johnson, P. R. 1998. Favourable conditions for the bioherbicide candidate Fusarium tumidum to infect and cause severe disease on gorse (Ulex europaeus) in a controlled environment. Biocontrol Sci. Technol 8:301311.Google Scholar
Morin, L., Watson, A. K., and Reeleder, R. D. 1990. Effect of dew, inoculum density, and spray additives on infection of field bindweed by Phomopsis convolvulus . Can. J. Plant Pathol 12:4856.Google Scholar
Nuss, D. L. 2001. Engineering hypoviruses for enhanced biological control of pathogenic fungi. Pages 260267 in Vurro, M., Gressel, J., Butt, T., Harman, G., Leger, R. St., Nuss, D., and Pilgeram, A. eds. Enhancing Biocontrol Agents and Handling Risks. Amsterdam, Netherlands: IOS.Google Scholar
Oliver, M. J., Quisenberry, J. E., Trolinder, N. L. G., and Keim, D. L. 1998. Control of plant gene expression. U.S. patent 5ZCOMMA Z723, 765.Google Scholar
Quimby, P. C. Jr., Fulgham, F. E., Boyette, C. D., and Connick, W. J. Jr. 1988. An invert emulsion replaces dew in biocontrol of sicklepod—a preliminary study. Pages 264270 in Hovde, D. A. and Beestman, G. B. eds. Pesticide Formulations and Application Systems. Volume 8. ASTM-STP 980. Philadelphia, PA: American Society of Testing and Materials.Google Scholar
Ridings, W. H. 1986. Biological control of stranglervine in citrus—a researcher's view. Weed Sci 34:(Suppl. 1). 3132.CrossRefGoogle Scholar
Robinson, M. and Sharon, A. 1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f.sp. aeschynomene by electroporation of germinated conidia. Curr. Genet 36:98104.Google Scholar
Sands, D. C., Ford, E. J., and Miller, R. V. 1990. Genetic manipulation of broad host-range fungi for biological control of weeds. Weed Technol 4:471474.Google Scholar
Sands, D. C., Ford, E. J., and Miller, R. V. et al. 1997. Characterization of a vascular wilt of Erythroxylum coca caused by Fusarium oxysporum f.sp. Erythroxyli forma species nova. Plant Dis 81:501504.Google Scholar
Sands, D. C. and Miller, R. V. 1990. Altering the host range of mycoherbicides by genetic manipulation. Pages 101109 in Duke, S. O., Menn, J. J., and Plimmer, J. R. eds. Pest Control with Enhanced Environmental Safety. Washington, DC: American Chemical Society.Google Scholar
Sands, D. C. and Pilgeram, A. 2001. Enhancing the efficacy of biocontrol agents against weeds. Pages 313 in Vurro, M., Gressel, J., Butt, T., Harman, G., Leger, R. St., Nuss, D., and Pilgeram, A. eds. Enhancing Biocontrol Agents and Handling Risks. Amsterdam, Netherlands: IOS.Google Scholar
Schisler, D. A., Jackson, M. A., and Bothast, R. J. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata . Phytopathology 81:587590.Google Scholar
Shabana, Y. M., Müller-Stover, D., and Sauerborn, J. 2003. Granular pesta formulation of Fusarium oxysporum f.sp. orthoceras for biological control of sunflower broomrape: efficacy and shelf-life. Biol. Control 26:189201.Google Scholar
Sharon, A., Amsellem, Z., and Gressel, J. 1992. Glyphosate suppression of an elicited defense response. Plant Physiol 98:654659.Google Scholar
Smith, D. A. 2003. Evaluation of Microsphaeropsis amaranthi as a Bioherbicide for the Control of Waterhemp (Amaranthus tuberculatus). . Purdue University, West Lafayette, IN. 71 p.Google Scholar
Smith, D. A. and Hallett, S. G. 2003. Compatibility of the candidate bioherbicide Microsphaeropsis amaranthi with herbicides and adjuvants in tank mixture. Pages 615618 in Proceedings of the BCPC International Congress: Crop Science and Technology, Glasgow, U.K.Google Scholar
Suslow, T. V. and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor plant pathogens in reducing crop growth. Phytopathology 72:111115.Google Scholar
TeBeest, D. O. 1984. Induction of tolerance to benomyl in Colletotrichum gloeosporioides f.sp. aeschynomene by ethyl methanesulfonate. Phytopathology 74:864.Google Scholar
TeBeest, D. O. 1991. Ecology and epidemiology of fungal plant pathogens studied as biological control agents of weeds. Pages 97114 in TeBeest, D. O. ed. Microbial Control of Weeds. New York: Chapman and Hall.Google Scholar
Templeton, G. E., TeBeest, D. O., and Smith, R. J. 1979. Biological weed control with mycoherbicides. Annu. Rev. Phytopathol 17:301310.Google Scholar
Teng, P. S. 1994. Integrated pest management in rice. Exp. Agric 30:115137.Google Scholar
Tranel, P. J., Gealy, D. R., and Kennedy, A. C. 1993. Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol 7:134139.Google Scholar
Vey, A., Hoagland, R. E., and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agents. Pages 311346 in Butt, T. M., Jackson, C., and Magan, N. eds. Fungi as Biocontrol Agents: Progress, Problems and Potential. Wallingford, U.K.: CABI.Google Scholar
Vogelsgang, S., Watson, A. K., and DiTommaso, A. 1998. Effect of moisture, inoculum production and planting substrate on disease reaction of field bindweed (Convolvulus arvensis L.) to the fungal pathogen Phomopsis convolvulus . Eur. J. Plant Pathol 104:253262.Google Scholar
Vurro, M., Gressel, J., Butt, T., Harman, G. E., Pilgeram, A., St. Leger, R. J., and Nuss, D. L. 2001. Enhancing Biocontrol Agents and Handling Risks. Amsterdam, The: Netherlands: IOS. 295 p.Google Scholar
Walker, H. L. and Tilley, A. M. 1997. Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol. Control 10:104112.Google Scholar
Watson, A. K. 1989. Current advances in bioherbicide research. Pages 987996 in Proceedings of Brighton Crop Protection Conference—Weeds. Farnham, U.K.: BCPC.Google Scholar
Watson, A. K. 1991. The classical approach with plant pathogens. Pages 323 in TeBeest, D. O. ed. Microbial Control of Weeds. New York: Chapman and Hall.Google Scholar
Watson, A. K. 1993. Biological Control of Weed Handbook. Monograph Series 7. Champaign, IL: Weed Science Society of American. 202 p.Google Scholar
Weidemann, G. J. 1992. Risk assessment: determining genetic relatedness and potential asexual gene exchange in biocontrol fungi. Plant Prot. Q 7:166168.Google Scholar
Westerman, P. R., Hofman, A., Vet, L. E. M., and van der Werf, W. 2003. Relative importance of vertebrates in epigeaic weed seed predation in organic cereal fields. Agric. Ecosyst. Environ 95:417425.Google Scholar
Weston, V. C. M. 1999. The commercial realization of biological herbicides. Pages 281289 in Proceedings of the Brighton Crop Protection Conference—Weeds. Vol. 1. Farnham, U.K.: BCPC.Google Scholar
Wu, B. M., Subbarao, K. V., and van Bruggen, A. H. C. 2000. Factors affecting the survival of Bremia lactucae sporangia deposited on lettuce leaves. Phytopathology 90:827833.Google Scholar
Wymore, L. A., Watson, A. K., and Gotlieb, A. R. 1987. Interaction between Colletotrichum coccodes and thidiazuron for control of velvetleaf (Abutilon theophrasti). Weed Sci 35:377383.Google Scholar
Yang, Y-K., Kim, S-O., Chung, H-S., and Lee, Y-H. 2000. Use of Colletotrichum graminicola KA001 to control barnyard grass. Plant Dis 84:5559.Google Scholar
Yu, W., Hallett, S. G., Sheppard, J., and Watson, A. K. 1998. Effects of carbon concentration and carbon-to-nitrogen ratio on growth, conidiation, spore germination and efficacy of the potential bioherbicide Colletotrichum coccodes . J. Ind. Microbiol. Biotechnol 20:333338.Google Scholar
Zhang, W. and Watson, A. K. 1997. Effect of dew period and temperature on the ability of Exserohilum monoceras to cause seedling mortality of Echinocloa species. Plant Dis 81:629634.Google Scholar