Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T08:40:24.119Z Has data issue: false hasContentIssue false

Absorption, Translocation, and Metabolism of Sulfometuron in Centipedegrass (Eremochloa ophiuroides) and Bahiagrass (Paspalum notatum)

Published online by Cambridge University Press:  12 June 2017

James H. Baird
Affiliation:
Auburn Univ., Tidewater Agric. Exp. Stn., P.O. Box 7219, 6321 Holland Road, Suffolk, VA 23437
John W. Wilcut
Affiliation:
Virginia Polytechnic Inst. and State Univ., Tidewater Agric. Exp. Stn., P.O. Box 7219, 6321 Holland Road, Suffolk, VA 23437
Glenn R. Wehtje
Affiliation:
Dep. Agron. and Soils and Alabama Agric. Exp. Stn., Auburn Univ., AL 36849
Ray Dickens
Affiliation:
Dep. Agron. and Soils and Alabama Agric. Exp. Stn., Auburn Univ., AL 36849
Sam Sharpe
Affiliation:
Dep. Agron. and Soils and Alabama Agric. Exp. Stn., Auburn Univ., AL 36849

Abstract

Sulfometuron, when applied as a foliar and/or soil application, prevented regrowth of bahiagrass. Sulfometuron application did not reduce regrowth of centipedegrass regardless of method of application. Sulfometuron was absorbed by the roots and foliage of centipedegrass and bahiagrass. Symplasmic translocation of the herbicide was evident in both species. Translocation of foliar-applied sulfometuron increased from approximately 1% at 48 h after application to 23% at 72 h in bahiagrass. Metabolism of sulfometuron was greater in centipedegrass (69% of foliar-applied, 10% of root-applied) at 72 h after application than in bahiagrass (30% of foliar-applied and 4% of root-applied). Tolerance of centipedegrass to sulfometuron appeared to be related to a high degree of herbicide metabolism in this species.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brown, H. M. and Neighbors, S. M. 1987. Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pestic. Biochem. Physiol. 29:112120.CrossRefGoogle Scholar
2. Beyer, E. M. Jr., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Pages 200295 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. M. Dekker, New York.Google Scholar
3. Devine, M. D. and Vanden Born, W. H. 1985. Absorption, translocation, and foliar activity of clopyralid and chlorsulfuron in Canada thistle (Cirsium arvense) and perennial sowthistle (Sonchus arvensis). Weed Sci. 33:524530.CrossRefGoogle Scholar
4. Dickens, R. and Turner, D. L. 1984. Postemergence herbicide tolerance among warm season turfgrasses. Proc. South. Weed Sci. Soc. 37:20.Google Scholar
5. Falco, S. C., Chaleff, R. S., Dumas, K. S., La Rossa, R. A., Leto, K. J., Mauvais, C. J., Mazur, B. J., Ray, T. B., Schloss, J. V., and Yadav, N. S. 1985. Molecular biology of sulfonylurea herbicide activity. Pages 313328 in Zaitlin, M., Day, P., and Hollaender, A., eds. Biotechnology in Plant Science, Academic Press, New York.CrossRefGoogle Scholar
6. Gonzalez, F. E., Atkins, R. L., and Brown, G. C. 1984. Sulfometuron methyl, rate and timing studies on bermudagrass and bahiagrass roadside turf. Proc. South. Weed Sci. Soc. 37:272274.Google Scholar
7. Hageman, L. H. and Behrens, R. 1984. Basis for response differences of two broadleaf weeds to chlorsulfuron. Weed Sci. 32:162168.CrossRefGoogle Scholar
8. Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. No. 347. 32 pp.Google Scholar
9. Hutchison, J. M., Shapiro, R., and Sweetser, P. B. 1984. Metabolism of chlorsulfuron by tolerant broadleaves. Pestic. Biochem. Physiol. 22:243247.CrossRefGoogle Scholar
10. LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of the enzyme acetolactate synthase in Salmonella typhimurium . J. Biol. Chem. 259:87538757.CrossRefGoogle ScholarPubMed
11. Lewis, W. M. and DiPaola, J. M. 1985. Tolerance of Eremochloa ophiuroides, Paspalum notatum, and Festuca arundinaceae to herbicides. Proc. 5th Int. Turf Res. Conf. 5:717726.Google Scholar
12. Leys, A. R. and Slife, F. W. 1988. Absorption and translocation of 14C-chlorsulfuron and 14C-metsulfuron in wild garlic (Allium vineale). Weed Sci. 36:14.CrossRefGoogle Scholar
13. Lichtner, F. T. 1986. Phloem transport of agricultural chemicals. Pages 601608 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport. A. R. Liss, Inc., New York.Google Scholar
14. Peterson, P. J. and Swisher, B. A. 1985. Absorption, translocation, and metabolism of 14C-chlorsulfuron in Canada thistle (Cirsium arvense). Weed Sci. 33:711.CrossRefGoogle Scholar
15. Sauers, R. F. and Levitt, G. 1984. Sulfonylureas: new high potency herbicides. ACS Symp. Ser.-Am. Chem. Soc. 255:2128.Google Scholar
16. Scheel, D. and Casida, J. E. 1985. Sulfonylurea herbicides: growth inhibition in soybean cell suspension cultures and in bacteria correlated with block biosynthesis of valine, leucine, or isoleucine. Pestic. Biochem. Physiol. 23:398412.CrossRefGoogle Scholar
17. Sweetser, P. B., Schow, G. C., and Hutchinson, J. M. 1982. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1823.CrossRefGoogle Scholar