Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T23:33:33.014Z Has data issue: false hasContentIssue false

Adsorption of Chloridazon by Soils and their Components

Published online by Cambridge University Press:  12 June 2017

Maria J. Sánchez-Martín
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., 37071 Salamanca, Spain
Maria Sáanchez-Camazano
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., 37071 Salamanca, Spain

Abstract

The effect of soil composition on adsorption of chloridazon by 18 samples of natural soils, with different chemical and textural characteristics, obtained from west-central Spain, was investigated. The effect of removal of organic matter on adsorption and adsorption of the herbicide by the active components of the soils (montmorillonite and humic acid) was also studied. A highly significant correlation was found between the distribution coefficient (Kd) and organic matter content when all the soils or the soils with organic matter content >2% were considered. According to the determination coefficients (r2), organic matter content accounted for 72% of the variance in adsorption in the former case and 92% in the latter. In soils with an organic matter content <2%, there was no correlation between Kd and organic matter content. A significant correlation was observed between Kd and smectite content for soils containing smectite in their clay fraction. Both simple and multiple correlations showed that clay content, excluding the smectite fraction, had a relatively small effect on adsorption of the herbicide. Adsorption of chloridazon by oxidized soils, montmorillonite, and humic acid confirms the effect of organic matter and smectite on adsorption in natural soils.

Type
Soil, Air, and Water
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Calvet, R., Tercé, M., and Arvieu, J. C. 1980. Adsorption des pesticides par les sols et leurs constituants. III Caractéristiques générales de l'adsorption des pesticides. Ann. Agron. 31:239257.Google Scholar
2. Felbeck, G. T. Jr. 1965. Structural chemistry of soil humic substances. Adv. Agron. 17:327367.Google Scholar
3. Giles, C. H., McEwan, T. H., Nakhwa, S. N., and Smith, D. 1960. Studies in adsorption: Part IX. A system of classification of solution adsorption isotherms and its use on diagnosis of adsorption mechanisms and in measurement of specific areas of soils. J. Chem. Soc. 39733993.Google Scholar
4. González García, F. and González García, S. 1953. Modificaciones producidas por tratamiento térmico en las propiedades físico—químicas de los silicatos de la serie isomorfa montmorillonita-beidellita. An. Edafol. Agrobiol. 12:925992.Google Scholar
5. Jamet, P. and Piedallu, M. A. 1975. Etude de l'adsorption et de la désorption de la pyrazone (amino-5 chloro-4 phenyl-2 (2H) pyridazinone-3) par différents types de sols. Weed Res. 15:113121.Google Scholar
6. Khan, S. U. 1977. Adsorption of dyfonate (O-ethyl S-phenyl ethyl phosphonodithioate) on humic acid. Can. J. Soil Sci. 57:913.Google Scholar
7. Lauss, F. 1975. Untersuchungen über das Adsorptions-und Einwascherhalten des Herbizides Pyramin in verschiedenen Böden. Bodenkultur 26:261271.Google Scholar
8. MAPA. 1987. Anuario de Estadística Agraria 1986. Servicio de Estadísticas Agrarias del MAPA, Secretaria General Técnica, Madrid, Spain. 670 pp.Google Scholar
9. Porta Casanellas, J. 1986. Técnicas y Experimentos en Edafologíe. Departamento de Ciencia del Suelo de la ETSIA. Universidad Politécnica de Cataluña, Lérida, Spain. 282 pp.Google Scholar
10. Prat Pérez, L. and Sánchez, B. 1973. Contribución al estudio de la téchnica de Walkley y Black para la determinación de carbono orgánico de suelos. An. Edafol. Agrobiol. 32:913926.Google Scholar
11. Mortland, M. M. 1968. Pyridinium-montmorillonite complexes with ethyl N,N-di-n-propylthiol carbamate (EPTC). J. Agric. Food Chem. 16:706707.Google Scholar
12. Sánchez-Camazano, M. and Sánchez-Martín, M. J. 1984. Adsorción de azinfos-metil por suelos. Agrochimica 28:148158.Google Scholar
13. Sánchez-Martín, M. J. and Sánchez-Camazano, M. 1987. Adsorption of chloridazon by montmorillonite. Chemosphere 16:937944.Google Scholar
14. Schnitzer, M. 1974. The methylation of humic substances. Soil Sci. 117:94102.Google Scholar
15. Schnitzer, M. and Hoffman, I. 1964. Pyrolisys of soil organic matter. Soil Sci. Soc. Am. Proc. 28:520525.Google Scholar
16. Smith, D. T. and Meggitt, W. F. 1970a. Movement and distribution of pyrazon in soil. Weed Sci. 80:255259.CrossRefGoogle Scholar
17. Smith, D. T. and Meggitt, W. T. 1970b. Persistence and degradation of pyrazon in soil. Weed Sci. 18:260264.Google Scholar
18. Stevenson, F. J. 1982. Humus Chemistry. Genesis, Composition, Reactions. John Wiley & Sons, New York.Google Scholar
19. Streibig, J. C. 1980. Phytotoxicity and adsorption of TCA and chloridazon in nine Danish soils. Acta Agric. Scand. 30:364368.CrossRefGoogle Scholar
20. Worting, C. R. and Walker, S. B. 1987. The Pesticide Manual. The Lavenham Press Limited, Suffolk, England. Page 155.Google Scholar