Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:49:32.289Z Has data issue: false hasContentIssue false

Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola)

Published online by Cambridge University Press:  12 June 2017

Mary J. Guttieri
Affiliation:
University of Idaho, Aberdeen, ID 83210
Carol A. Mallory-Smith
Affiliation:
Oregon State University, Corvallis, OR 97331
Donn C. Thill
Affiliation:
University of Idaho, Moscow, ID 83843
Roger J. Baerg
Affiliation:
American Cyanamid, Princeton, NJ 08543

Abstract

The effect of target site mutation for acetolactate synthase (ALS)-inhibitor resistance on ALS activity was evaluated in a sulfonylurea-resistant (R) biotype of prickly lettuce with a proline173 to histidine substitution in Domain A of the ALS enzyme. I50 values for ALS inhibition by several ALS-inhibitor herbicides were determined for R and susceptible (S) biotypes. Results from both a standard ALS assay and a chloroplast assay for ALS activity showed that the R biotype also was cross-resistant to representatives of the imidazolinone (imazethapyr) and triazolopyrimidine (flumetsulam) families, but was not cross-resistant to the pyrimidinyl oxybenzoate (4,6-dimethoxypyrimidin-2-y 1-oxy-2-benzoic acid) tested. The Km (pyruvate) was similar for ALS extracted from the R and S biotypes, suggesting that mutation for resistance did not alter pyruvate binding on the enzyme. However, specific activity of ALS from the R biotype was 57% less than specific activity of ALS from the S biotype, suggesting that the resistance mutation may affect enzyme function, expression, or stability. ALS from the R biotype was less sensitive to inhibition by the branched chain amino acids, valine, leucine, and isoleucine, than ALS from the S biotype. Reduced sensitivity to feedback inhibition was correlated with 70, 40, and 9% higher concentrations of valine, leucine, and isoleucine, respectively, on a per seed basis in R vs. S seed.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6: 858864.CrossRefGoogle Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. H. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 1738117385.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia is associated with elevated seed levels of branched chain amino acids. Weed Sci. 41: 1822.Google Scholar
Gerwick, C. B., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7: 519524.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40: 670678.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43: 175178.Google Scholar
Hailing, B. P. and Behrens, R. 1983. Effects of difenzoquat on photoreactions and respiration in wheat (Triticum aestivum) and wild oat (Avena fatua). Weed Sci. 31: 693699.Google Scholar
Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resisant to sulfonylurea herbicides. Mol. Gen. Genet. 204: 430434.Google Scholar
Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C.-F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7: 12411248.Google Scholar
Mallory-Smith, C. A. 1990. Identification and inheritance of sulfonylurea herbicide-resistance in prickly lettuce (Lactuca serriola L.). Ph.D. dissertation. University of Idaho, Moscow, ID. 58 p.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990a. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4: 163168.Google Scholar
Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990b. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4: 787790.Google Scholar
Mourad, G. and King, J. 1992. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana . Planta 188: 491497.Google Scholar
Mourad, G., Williams, D., and King, J. 1995. A double mutant allele, csr 1–4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta 196: 6468.Google Scholar
Rathinasabapathi, B. and King, J. 1991. Herbicide resistance in Datura innoxia . Kinetic characterization of acetolactate synthase from wild type and sulfonylurea variants. Plant Physiol. 96: 255261.Google Scholar
Rathinasabapathi, B., Williams, D., and King, J. 1990. Altered feedback sensitivity to valine, leucine, and isoleucine of acetolactate synthase from herbicide-resistant variants of Datura innoxia . Plant Sci. 67: 16.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75: 827831.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanisms of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.CrossRefGoogle ScholarPubMed
Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42: 110118.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase-inhibitor herbicides. in Powles, S.B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers, pp. 83139.Google Scholar
[SAS] Statistical Analysis Systems. 1990. SAS Procedures Guide. Version 6, 3rd ed. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Schulze-Siebert, D., Heineke, D., Scharf, H., and Schultz, G. 1984. Pyruvate-derived amino acids in spinach chloroplasts. Plant Physiol. 76: 465471.CrossRefGoogle ScholarPubMed
Siehl, D. L., Bangston, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaux, R. J., and Subramanian, M. V. 1995. Patterns of cross tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn varieties designed for tolerance to imidazolinones. Crop Sci. In press.Google Scholar
Subramanian, M. V., Hung, H., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94: 239244.Google Scholar
Subramanian, M. V., Loney-Gallant, V., Dias, J. M., and Mireles, L. C. 1991. Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol. 96: 310313.Google Scholar
Walker, D. A., Cerovic, Z. G., and Robinson, S. P. 1987. Isolation of intact chloroplasts: general principles and criteria of integrity. Methods in Enzymology 148: 145157.Google Scholar
Wiersma, P. A., Schmiemann, M. G., Condie, J. A., Crosby, W. L., and Maloney, M. M. 1989. Isolation, expression, and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus . Mol. Gen. Genet. 219: 413420.Google Scholar