Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T08:05:43.990Z Has data issue: false hasContentIssue false

The Bleaching Effect of the Diphenyl Ether Oxyfluorfen

Published online by Cambridge University Press:  12 June 2017

K. J. Kunert
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany
P. Böger
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany

Abstract

The diphenyl ether, oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], exerts a very strong and rapid bleaching effect upon intact microalgae such as Scenedesmus acutus. Carotenoids, and subsequently chlorophylls, are destroyed concurrently with ethane formation and inhibition of photosynthetic oxygen evolution. These herbicidal effects are not observed before an activation time of approximately 2 h, during which photosynthetic electron transport is necessary. Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] inhibits oxyfluorfen activity during this activation time, but not thereafter. Isolated spinach chloroplasts (Spinacia oleracea ‘Atlanta’) evolve ethane after a light-incubation phase in the presence of oxyfluorfen as well as paraquat (methylviologen, 1,1′-dimethyl-4,4′-bipyridinium ion). Depending on their chemical constitution, diphenyl ethers apparently act differently and multifunctionally. The effects described for oxyfluorfen are believed to represent the primary mode of action of bleaching diphenyl ethers.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartels, P. G. and Watson, C. W. 1978. Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci. 26:198203.CrossRefGoogle Scholar
2. Böger, P. and Schlue, U. 1976. Long-term effects of herbicides on the photosynthetic apparatus. I. Influence of diuron, triazines and pyridazinones. Weed Res. 16:149154.CrossRefGoogle Scholar
3. Dumelin, E. E. and Tappel, A. L. 1977. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids 12:894900.CrossRefGoogle ScholarPubMed
4. Eastin, E. G. 1971. Fate of fluorodifen in resistant peanut seedlings. Weed Sci. 19:261265.CrossRefGoogle Scholar
5. Elstner, E. F. and Frommeyer, D. 1978. Production of hydrogen peroxide by photosystem II of spinach chloroplast lamellae. FEBS Lett. 86:143146.CrossRefGoogle ScholarPubMed
6. Elstnerm, E. F. and Pils, I. 1979. Ethane formation and chloroplast bleaching in DCMU-treated Euglena gracilis cells and isolated spinach chloroplast lamellae. Z. Naturforsch. 34c:10401043.CrossRefGoogle Scholar
7. Elstner, E. F., Saran, M., Bors, W., and Langfelder, E. 1978. Oxygen activation in isolated chloroplasts. Eur. J. Biochem. 89:6166.CrossRefGoogle ScholarPubMed
8. Fadayomi, O. and Warren, G. F. 1976. The light requirement for herbicidal activity of diphenyl ethers. Weed Sci. 24:598600.CrossRefGoogle Scholar
9. Halliwell, B. 1978. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. FEBS Lett. 96:238242.CrossRefGoogle ScholarPubMed
10. Harbour, J. R. and Bolton, J. R. 1978. The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls in vivo and in vitro . Photochem. Photobiol. 28:231234.CrossRefGoogle Scholar
11. Hawton, D. and Stobbe, E. H. 1971. The fate of nitrofen in rape, redroot pigweed, and green foxtail. Weed Sci. 19:555558.CrossRefGoogle Scholar
12. Hesse, M. 1974. Wachstum und Synchronisierung der Alge Bumilleriopsis filiformis Vischer (Xanthophyceae). Planta (Berl.) 120:135146.CrossRefGoogle Scholar
13. Konze, J. R. and Elstner, E. F. 1978. Ethane and ethylene formation by mitochondria as indication of aerobic lipid degradation in response to wounding of plant tissues. Biochim. Biophys. Acta 528:213221.CrossRefGoogle Scholar
14. Kunert, K.-J. and Böger, P. 1975. Absence of plastocyanin in the alga Bumilleriopsis and its replacement by cytochrome 553. Z. Naturforsch. 30c:190200.CrossRefGoogle Scholar
15. Kunert, K.-J. and Böger, P. 1979. Influence of bleaching herbicides on chlorophyll and carotenoids. Z. Naturforsch. 34c:10471051.CrossRefGoogle Scholar
16. Lambert, , Kunert, R. K.-J., and Böger, P. 1979. On the photo-toxic mode of action of nitrofen. Pest. Biochem. Physiol. 11:267274.CrossRefGoogle Scholar
17. McCalla, D. R., Reuvers, A., and Kaiser, C. 1971. Activation of nitrofurazone in animal tissues. Biochem. Pharmacol. 20:35323537.CrossRefGoogle ScholarPubMed
18. Mason, R. P. and Holtzman, J. L. 1975. The mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry 14:16261632.CrossRefGoogle ScholarPubMed
19. Matsunaka, S. 1969. Acceptor of light energy in photoactivation of diphenylether herbicides. J. Agr. Food Chem. 17:171175.CrossRefGoogle Scholar
20. Matsunaka, S. 1969. Activation and inactivation of herbicides by higher plants. Residue Rev. 25:4558.Google Scholar
21. Moreland, D. E., Blackman, W. J., Todd, H. G., and Farmer, F. S. 1970. Effects of diphenylether herbicides on reactions of mitochondria and chloroplasts. Weed Sci. 18:636642.CrossRefGoogle Scholar
22. Sandmann, G., Kunert, K.-J., and Böger, P. 1979. Biological systems to assay herbicidal bleaching. Z. Naturforsch. 34c:10441046.CrossRefGoogle Scholar
23. Sealy, R. C., Swartz, H. M., and Olive, P. L. 1978. ESR-spin trapping. Detection of superoxide formation during aerobic microsomal reduction of nitro compounds. Biochem. Biophys. Res. Commun. 82:680684.CrossRefGoogle Scholar
24. Takahama, U. and Nishimura, M. 1975. Formation of singlet molecular oxygen in illuminated chloroplasts. Effects on photo-inactivation and lipid peroxidation. Plant Cell Physiol. 16:737748.Google Scholar
25. Urbach, D., Suchanka, M., and Urbach, W. 1976. Effect of substituted pyridazinone herbicides and of difunone (EMD-IT 5914) on carotenoid biosynthesis in green algae. Z. Naturforsch. 31c:652655.CrossRefGoogle Scholar
26. Van Rensen, J. J. S., van der Vet, W., and van Vliet, W. P. A. 1977. Inhibition and uncoupling of electron transport in isolated chloroplasts by the herbicide 4,6-dinitro-o-cresol. Photochem. Photobiol. 25:579583.CrossRefGoogle Scholar
27. Wardman, P. and Clarke, E. D. 1976. Oxygen inhibition of nitroreductase: electron transfer from nitro-radical anions to oxygen. Biochem. Biophys. Res. Commun. 69:942949.CrossRefGoogle ScholarPubMed
28. Wessels, J. S. G. 1965. Mechanism of the reduction of organic nitro compounds by chloroplasts. Biochim. Biophys. Acta 109:357371.CrossRefGoogle ScholarPubMed
29. Yih, R. Y. and Swithenbank, C. 1975. New potent diphenyl ether herbicides. J. Agric. Food Chem. 23:592593.CrossRefGoogle ScholarPubMed
30. Youngman, R. J. and Dodge, A. D. 1979. Mechanism of paraquat action: inhibition of the herbicidal effect by a copper chelate with superoxide dismutating activity. Z. Naturforsch. 34c:10321035.CrossRefGoogle Scholar