Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:46:51.188Z Has data issue: false hasContentIssue false

Climate Change and the Potential Global Distribution of Serrated Tussock (Nassella trichotoma)

Published online by Cambridge University Press:  20 January 2017

Michael S. Watt*
Affiliation:
Scion, P.O. Box 29237, Fendalton, Christchurch, New Zealand
Darren J. Kriticos
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Entomology and the Climate Adaptation Flagship, G.P.O. Box 1700, Canberra, ACT 2601, Australia
Shona L. Lamoureaux
Affiliation:
AgResearch Ltd, Lincoln, Private Bag 4749, Christchurch 8140, New Zealand
Graeme W. Bourdôt
Affiliation:
AgResearch Ltd, Lincoln, Private Bag 4749, Christchurch 8140, New Zealand
*
Corresponding author's E-mail: michael.watt@scionresearch.com

Abstract

We used the process-oriented niche model CLIMEX to estimate the potential global distribution of serrated tussock under projected future climates. Serrated tussock is a drought-tolerant, wind- and human-dispersed grass of South American origin that has invaded pastures in Australia, Europe, New Zealand, and South Africa. The likely effect of climate change on its potential global distribution was assessed by applying six climate-change scenarios to a previously developed model. The projections of climatic suitability under the current climate revealed considerable scope for spread, with the most suitable areas occurring adjacent to existing naturalized populations in Australia, New Zealand, and Western Europe. Under future climates, projected to the 2080s, the land area suitable for serrated tussock contracts globally between 20 and 27%. Changes in projected potential area under the six scenarios were very similar in all geographical regions apart from North America and New Zealand, where the projections range from little change or contraction under the National Center for Atmospheric Research (NCAR) and Centre for Climate Research (MIROC) global climate models (GCMs) to expansion under the Commonwealth Scientific and Industrial Research Organisation (CSIRO) GCM. Elsewhere, contractions occur in Australia, Asia, South America, and Africa under all six future climate scenarios. By contrast, for Europe, the area climatically suitable for serrated tussock increases under all six scenarios (average increase 47%) through expansions into eastern European countries that are currently unsuitable and through increases in the suitable area in England, Ireland, and Denmark. Since pastoralism is a dominant land use in these regions of Europe, a prudent biosecurity strategy would be to contain the nascent foci of serrated tussock in southern France, along the west coast of Italy, and in the United Kingdom. This strategy could consist of a set of policies to limit human-assisted dispersal of the species' seeds and to reduce wind-borne spread through cultural control of the plant.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aubouy, A. 1878. Note sur quelques plantes étrangères recuillies à Lodève (Hérault), Montpellier, Imprimerie centrale du Midi, Hamelin Frères: Pp. Pages 18.Google Scholar
Barkworth, M. E. and Torres, M. A. 2001. Distribution and diagnostic characters of Nassella (Poaceae: Stipeae). Taxon. 50:439468.Google Scholar
Bourdôt, G. and Saville, D. 2007. Monitoring nassella tussock (Nassella trichotoma) under Environment Canterbury's Regional Pest Management Strategy—Year 10 (2006–2007). Lincoln, New Zealand AgResearch. 27 p.Google Scholar
Campbell, M. H. 1982. The biology of Australian weeds. 9. Nassella trichotoma (Nees) Arech. J. Aust. Inst. Agric. Sci. 48:7684.Google Scholar
Campbell, M. H. 1998. Biological and ecological impact of serrated tussock (Nassella trichotoma (Nees) Arech.) on pastures in Australia. Plant Prot. Q. 13:8086.Google Scholar
Connor, H. E. 1960. Nassella tussock in Argentina. N. Z. J. Agric. 100:1821.Google Scholar
Cowan, T. F., Sindel, B. M., Jessop, R. S., and Browning, J. E. 2007. Mapping the distribution and spread of Nassella trichotoma (serrated tussock) with a view to improving detectability, containment and eradication. Crop Prot. 26:228231.Google Scholar
[DEH] Commonwealth Department of the Environment and Heritage. 2003. Weeds of National Significance: Weed Management Guide. Serrated Tussock (Nassella trichotoma). Canberra Commonwealth Department of the Environment and Heritage and the CRC for Australian Weed Management. 6 p.Google Scholar
Denne, T. 1988. Economics of nassella tussock (Nassella trichotoma) control in New Zealand. Agric. Ecosyst. Environ. 20:259278.Google Scholar
[EPPO] European Plant Protection Organisation. 2010. European Plant Protection Organisation Alert List. http://www.eppo.org/QUARANTINE/Alert_List/alert_list.htm. Accessed: February 15, 2010.Google Scholar
European Space Agency. 2009. ESA Globcover Project, led by MEDIA-France/POSTEL. http://ionia1.esrin.esa.int/. Accessed 26 November 2009.Google Scholar
Green, K. R. 1956. The problem of serrated tussock in New South Wales. Agricultural Gazette of New South Wales. 67:124135.Google Scholar
Healy, A. J. 1945. Nassella tussock (Nassella trichotoma (Nees.) Hack.). Field Studies and their Agricultural Significance. Wellington, New Zealand Department of Scientific and Industrial Research. 90 p.Google Scholar
Hennessy, K. J. and Colman, R. 2007. Global climate change projections. Pages 3648 in Pearce, K. B., Holper, P. N., Hopkins, M., Bouma, W. J., Whetton, P. H., Hennessy, K. J., and Power, S. B., eds. Climate Change in Australia—Technical Report 2007. Melbourne CSIRO.Google Scholar
Hulme, P. E., Pysek, P., Nentwig, W., and Vila, M. 2009. Will threat of biological invasions unite the European Union? Science. 324:4041.Google Scholar
[IPCC] International Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pages 1996 in Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., and Chen, Z., eds. Cambridge and New York Cambridge University Press.Google Scholar
Jeanmonod, D. and Gamisans, J. 2007. Flora Corsica. Aix-en-Provence, France Edisud. 1055 p.Google Scholar
Jones, R. E., Vere, D. T., and Campbell, M. H. 2000. The external costs of pasture weed spread: an economic assessment of serrated tussock control. Agric. Econ. 22:91103.Google Scholar
Kriticos, D. J., Alexander, N. S., and Kolomeitz, S. M. 2006. Predicting the potential geographic distribution of weeds in 2080. Pages 2734 in Preston, C., Watts, J. H., and Crossman, N. D., eds. Fifteenth Australian Weeds Conference. Adelaide, Australia Weed Science Society of Victoria.Google Scholar
Kriticos, D. J., Lamoureaux, S., Bourdôt, G. W., and Pettit, W. 2004. Nassella tussock: current and potential distribution in New Zealand. N. Z. Plant Prot. 57:8188.Google Scholar
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W., and Maywald, G. F. 2003. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40:111124.Google Scholar
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Bathols, J., Macadam, I., and Scott, J. K. 2011. CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Meth. Ecol. Evol. DOI: 10.1111/j.2041-210X.2011.00134.xGoogle Scholar
Leonard, W. F. 1962. How widespread is nassella tussock? N. Z. J. Agric. Res. 104:301306.Google Scholar
McLaren, D. A., Stajsic, V., and Gardener, M. R. 1998. The distribution and impact of South/North American stipoid grasses (Poaceae: Stipeae) in Australia. Plant Prot. Q. 13:6270.Google Scholar
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R. J., and Taylor, K. E. 2007. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88:13831394.Google Scholar
Michelmore, M. 2003. The serrated tussock managers' factpack. Orange, Australia NSW Agriculture. 74 p.Google Scholar
Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., and New, M. 2004. A comprehensive set of climate scenarios for Europe and the globe: the observed record (1900–2000) and 16 scenarios (2000–2100). Working Paper 55. Norwich, UK University of East Anglia.Google Scholar
Moggi, G. 1971. Ad florum Italicum notulae taxonomicae et geobotanicae 6. Nuovo stazione Toscana di Stipa trichotoma Nees. (Contribution to the taxonomy and geobotany of the Italian flora Part 6. New Tuscan location of Stipa trichotoma Nees.). Webbia. 25:675680.Google Scholar
Moretto, A. and Distel, R. 1998. Requirement of vegetation gaps for seedling establishment of two unpalatable grasses in a native grassland of central Argentina. Aust. J. Ecol. 23:419423.Google Scholar
Olesen, J. E. and Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16:239262.Google Scholar
Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., and Somerville, R.C.J. 2007. Recent climate observations compared to projections. Science. 316:709.Google Scholar
Ruosteenoja, K., Carter, T. R., Jylhä, K., and Tuomenvirta, H. 2003. Future Climate in World Regions: An Intercomparison of Model-Based Projections for the New IPCC Emissions Scenarios. Helsinki Finnish Environment Institute. 83 p.Google Scholar
Silene. 2010. Système d'Information et de Localisation des Espèces Natives et Envahissantes. http://flore.silene.eu/index.php?cont=accueil. Accessed 14 March 2010.Google Scholar
Sinden, J., Jones, R., Hester, S., Odom, D., Kalisch, C., James, R., and Cacho, O. 2004. The economic impact of weeds in Australia. Adelaide CRC for Australian Weed Management. 50 p.Google Scholar
Stace, C. 2001. New Flora of the British Isles. 2nd ed. Cambridge Cambridge University Press. 1130 p.Google Scholar
Stampfli, A. and Zeiter, M. 2004. Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. J. Ecol. 92:568576.Google Scholar
Stephens, A.E.A., Kriticos, D. J., and Leriche, A. 2007. The current and future potential geographic distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull. Entomol. Res. 97:369378.Google Scholar
Sutherst, R. W., Maywald, G. F., and Kriticos, D. J. 2007. CLIMEX Version 3: User's Guide. http://www.Hearne.com.au. Melbourne, Australia Hearne Scientific Software. 131 p.Google Scholar
Torres, M. A. 1996. Monographia 12. Revision del genero Stipa (Poaceae) en la Provincia de Buenos Aires. Buenos Aires Provincia de Buenos Aires Comisión de investigaciones cientificas.Google Scholar
Torres, M. A. 1997. Monografia 13. Nassella (Gramineae) del noreste de la Argentina Stipa (Gramineae) del noreste de la Argentina Nicoraella (Gramineae) un nuevo género para América del Sur. Buenos Aires Provincia de Buenos Aires Comisión de Investigaciones Cientificas.Google Scholar
Watterson, I. G. 1996. Non-dimensional measures of climate model performance. Int. J. Climatol. 16:379391.Google Scholar
Wells, M. J. 1977. Progress with research on nassella tussock. Pages 4755 in Proceedings of the National Weeds Conference of South Africa. Cape Town Balkema.Google Scholar
Whetton, P. H., McInnes, K. L., Jones, R. N., Hennessy, K. J., Suppiah, R., Page, C. M., Bathols, J. M., and Durack, P. 2005. Australian climate change projections for impact assessment and policy application: a review. Melbourne CSIRO. 34 p.Google Scholar
Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge Cambridge University Press. 174 p.Google Scholar