Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:16:21.080Z Has data issue: false hasContentIssue false

Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides

Published online by Cambridge University Press:  20 January 2017

Douglas E. Shoup
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Dallas E. Peterson
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506

Abstract

Resistance to protoporphyrinogen oxidase (protox)-inhibiting herbicides was identified in a population of common waterhemp that had been treated with acifluorfen for several years. The protox-resistant biotype of common waterhemp was approximately 34, 82, 8, and 4 times more resistant than a susceptible common waterhemp biotype to acifluorfen, lactofen, fomesafen, and sulfentrazone, respectively. The resistant biotype also showed a high level of resistance to acetolactate synthase–inhibiting herbicides thifensulfuron and imazethapyr but not to glyphosate or paraquat. An organophosphate insecticide was applied with acifluorfen or lactofen to determine if metabolism could be the mechanism of resistance. No differences were observed between resistant plants treated with an organophosphate plus a protox-inhibiting herbicide and plants treated with a protox-inhibiting herbicide alone.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10:570575.CrossRefGoogle Scholar
Battles, B., Hartzler, B., and Buhler, D. 1998. Effect of common waterhemp emergence date in soybean on growth and competitiveness. Proc. N. Cent. Weed Sci. Soc. 53:145146.Google Scholar
Baumgartner, J. R., Al-Khatib, K., and Currie, R. S. 1999. Cross-resistance of imazethapyr-resistant common sunflower (Helianthus annuus) to selected imidazolinone, sulfonylurea, and triazolopyrimidine herbicides. Weed Technol. 13:489493.Google Scholar
Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90:11751181.CrossRefGoogle ScholarPubMed
Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed, Palmer amaranth, and common waterhemp in soybean. Weed Sci. 51:3743.Google Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci. 45:634641.Google Scholar
Dodge, A. D. 1972. The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour 6:2325.Google Scholar
Donaldson, R. P. and Luster, D. G. 1991. Multiple forms of plant cytochromes P-450. Plant Physiol. 96:669674.Google Scholar
Duke, S. O., Lee, H. J., Duke, M. V., et al. 1997. Mechanisms of resistance to protoporphyrinogen oxidase-inhibiting herbicides. Pages 155160 In R. De Prado, J. Jorrín, and L. García-Torres, eds. Weed and Crop Resistance to Herbicides. Norwell, MA: Kluwer Academic.Google Scholar
Eastin, E. F. 1971. Fate of fluorodifen in resistant peanut seedlings. Weed Sci. 19:261265.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.CrossRefGoogle Scholar
Frear, D. S. and Swanson, H. R. 1973. Metabolism of substituted diphenyl ether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.). Pestic. Biochem. Physiol. 3:473482.Google Scholar
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.CrossRefGoogle Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol. 11:132137.Google Scholar
Gronwald, J. W. 1997. Resistance to PS II inhibitor herbicides. Pages 5359 In R. De Prado, J. Jorrín, and L. García-Torres, eds. Weed and Crop Resistance to Herbicides. Norwell, MA: Kluwer Academic.Google Scholar
Hart, J. J. and DiTomaso, J. M. 1994. Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed Sci. 42:277284.CrossRefGoogle Scholar
Heap, I. M. 2002. International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.com. Accessed: February 24, 2002.Google Scholar
Hervieu, F. and Vaucheret, H. 1996. A single amino acid change in acetolactate synthase confers resistance to valine in tobacco. Mol. Gen. Genet. 251:220224.Google Scholar
Higgins, J. M., Whitwell, T., Corbin, F. T., Carter, G. E. Jr., and Hill, H. S. Jr. 1988. Absorption, translocation, and metabolism of acifluorfen and lactofen in pitted morningglory (Ipomoea lacunose) and ivyleaf morningglory (Ipomoea hederacea). Weed Sci. 36:141145.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
Jacobs, J. M. and Jacobs, N. J. 1984. Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis: partial characterization of the reaction in plant organelles and comparison with mammalian and bacterial systems. Arch. Biochem. Biophys. 229:312319.CrossRefGoogle ScholarPubMed
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organella and plasma membrane enriched fractions of barley. Plant Physiol. 97:197203.Google Scholar
Kreuz, K. and Fonné-Pfister, R. 1992. Herbicide-insecticide interaction in maize: malathion inhibits cytochrome P-450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 43:232240.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare) leaves. Plant Physiol. 102:881889.Google Scholar
Lehnen, L. P., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37:239248.Google Scholar
Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P., and Douce, R. 1992. Localization within the chloroplast of protoporphyrinogen oxidase the target enzyme for diphenyl ether-like herbicides. J. Biol. Chem. 267:46464651.CrossRefGoogle Scholar
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 260:231235.CrossRefGoogle ScholarPubMed
Matsumoto, H., Kashimoto, Y., and Warabi, E. 1999. Basis for common chickweed (Stellaria media) tolerance to oxyfluorfen. Pestic. Biochem. Physiol. 64:4753.Google Scholar
Matthews, J. M., Holtum, J.A.M., Liljegren, D. R., Furness, B., and Powles, S. B. 1990. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 94:11801186.CrossRefGoogle ScholarPubMed
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol. 13:632635.CrossRefGoogle Scholar
Regehr, D. L., Peterson, D. E., Ohlenbusch, P. D., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2002. Chemical Weed Control for Field Crops, Pasture, Rangeland, and Noncropland, 2001. Report of Progress 884. Manhattan, KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Stowe, A. E. and DiTomaso, J. M. 1989. Evidence for increased herbicide detoxification in triazine-tolerant velvetleaf. Proc. Northeast. Weed Sci. Soc. 43:3135.Google Scholar
Tardif, F. J. and Powles, S. B. 1999. Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass. Weed Sci. 47:258261.Google Scholar
[USDA] U.S. Department of Agriculture. 2002. National Agriculture Statistical Service. Agriculture Chemical Usage (PCU-BB). Field Crops 2000. Web page: http://usda.mannlib.cornell.edu/reports/nassr/other/pcu-bb/agcs0501.txt. Accessed: February 24, 2002.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.Google Scholar
Warabi, E., Usui, K., Tanaka, Y., and Matsumoto, H. 2001. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pest Manag. Sci. 57:743748.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus spp. is conferred by a Trp to Leu mutation in the ALS gene (accession no. U55852.) Plant Physiol. 111:1353.Google Scholar
Yadav, N., McDevitt, R. E., Benard, S., and Falco, S. C. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. USA 83:44184422.Google Scholar