Article contents
Differential Absorption and Translocation of Metribuzin by Downy Brome (Bromus tectorum) and Winter Wheat (Triticum aestivum)
Published online by Cambridge University Press: 12 June 2017
Abstract
Foliar and root absorption and translocation of metribuzin (4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one) by downy brome (Bromus tectorum L. # BROTE) and winter wheat (Triticum aestivum L.) was determined. After a 48-h absorption period, roots of three-week-old downy brome plants had absorbed two times more metribuzin on a total plant fresh weight basis than had roots of winter wheat. Root-absorbed metribuzin was translocated similarly regardless of species with 80% of absorbed 14C accumulating in leaf blades, 10% in the leaf sheaths, and 10% in the roots. After 24 h, leaves of downy brome and winter wheat had absorbed, respectively, 26 and 36% of foliar-applied metribuzin, and absorption increased threefold with the addition of a nonionic surfactant. Translocation of foliar-absorbed metribuzin was primarily towards the apex of the treated leaf. No translocation from the treated leaf to other plant parts occurred with either species. The greater tolerance of winter wheat to metribuzin is due in part to less root absorption of metribuzin by winter wheat than by downy brome.
- Type
- Physiology, Chemistry, and Biochemistry
- Information
- Copyright
- Copyright © 1987 by the Weed Science Society of America
References
Literature Cited
- 5
- Cited by