Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T23:38:55.720Z Has data issue: false hasContentIssue false

Drought Stress alters Solute Allocation in Broadleaf Dock (Rumex obtusifolius)

Published online by Cambridge University Press:  20 January 2017

Anna Katarina Gilgen*
Affiliation:
Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
Urs Feller
Affiliation:
Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
*
Corresponding author's E-mail: anna.gilgen@ips.unibe.ch

Abstract

According to climate models, drier summers must be expected more frequently in Central Europe during the next decades, which may influence plant performance and competition in grassland. The overall source–sink relations in plants, especially allocation of solutes to above- and below-ground parts, may be affected by drought. To investigate solute export from a given leaf of broadleaf dock, a solution containing 57Co and 65Zn was introduced through a leaf flap. The export from this leaf was detected by analysing radionuclide contents in various plant parts. Less label was allocated to new leaves and more to roots under drought. The observed alterations of source–sink relations in broadleaf dock were reversible during a subsequent short period of rewatering. These findings suggest an increased resource allocation to roots under drought improving the functionality of the plants.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Brown, I., Poggio, L., Gimona, A., and Castellazzi, M. 2011. Climate change, drought risk and land capability for agriculture: implications for land use in Scotland. Reg. Environ. Change 11:503518.Google Scholar
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., and Whetto, P. 2007. Regional Climate Projections. Pages 847940 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK Cambridge University Press.Google Scholar
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., de Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.-F., Sanz, M. J., Schulze, E.-D., Vesala, T., and Valentini, R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529533.Google Scholar
Doyle, C. J., Oswald, A. K., Haggar, R. J., and Kirkham, F. W. 1984. A mathematical-modeling approach to the study of the economics of controlling Rumex obtusifolius in grassland. Weed Res. 24:183193.Google Scholar
Dreesen, F. E., de Boeck, H. J., Janssens, I. A., and Nijs, I. 2012. Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ. Exp. Bot. 79:2130.Google Scholar
Fuhrer, J., Beniston, M., Fischlin, A., Frei, C., Goyette, S., Jasper, K., and Pfister, C. 2006. Climate risks and their impact on agriculture and forests in Switzerland. Clim. Change 79:79102.Google Scholar
Gebhardt, S., Schellberg, J., Lock, R., and Kühbauch, W. 2006. Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing. Precis. Agric. 7:165178.Google Scholar
Gilgen, A. K., Signarbieux, C., Feller, U., and Buchmann, N. 2010. Competitive advantage of Rumex obtusifolius L. might increase in intensively managed temperate grasslands under drier climate. Agric. Ecosyst. Environ. 135:1523.Google Scholar
Hann, P., Trska, C., and Kromp, B. 2012. Effects of management intensity and soil chemical properties on Rumex obtusifolius in cut grasslands in Lower Austria. J. Pest Sci. 85:515.Google Scholar
Hejcman, M., Strnad, L., Hejcmanová, P., and Pavlů, V. 2012. Effect of nutrient availability on performance and mortality of Rumex obtusifolius and R. crispus in unmanaged grassland. J. Pest Sci. 85:191198.Google Scholar
Hopkins, A. and Johnson, R. H. 2002. Effect of different manuring and defoliation patterns on broad-leaved dock (Rumex obtusifolius) in grassland. Ann. Appl. Biol. 140:255262.Google Scholar
Humphreys, J., Jansen, T., Culleton, N., MacNaeidhe, F. S., and Storey, T. 1999. Soil potassium supply and Rumex obtusifolius and Rumex crispus abundance in silage and grazed grassland swards. Weed Res. 39:113.Google Scholar
Iijima, Y. and Kurokawa, Y. 1999. Relationship between broadleaf dock (Rumex obtusifolius L.) and seasonal yield of orchardgrass (Dactylis glomerata L.) grazing pasture. Grassl. Sci. 45:203209.Google Scholar
Imhoff, H. and Voigtländer, G. 1979. Movement and distribution of 14C assimilates in the shoots and roots of Rumex obtusifolius L. and Polygonum bistorta L. as indicators for herbicide usage. Z. Acker- Pflanzenbau 148:418429.Google Scholar
Křišt'álová, V., Hejcman, M., Červená, K., and Pavlů, V. 2011. Effect of nitrogen and phosphorus availability on the emergence, growth and over-wintering of Rumex crispus and Rumex obtusifolius . Grass For. Sci. 66:361369.Google Scholar
Kutschera, L., Lichtenegger, E., and Sobotik, M. 1992. Wurzelatlas mitteleuropäischer Grünlandpflanzen. Stuttgart, Germany Gustav Fischer. Pp. 178180.Google Scholar
Lang, V., Voigtländer, G., and Kühbauch, W. 1975. Storage metabolism in broad-leaved dock (Rumex obtusifolius). Weed Res. 15:153158.Google Scholar
Martinkova, Z., Honek, A., Pekar, S., and Strobach, J. 2009. Survival of Rumex obtusifolius L. in an unmanaged grassland. Plant Ecol. 205:105111.Google Scholar
McDonald, A., Riha, S., DiTommaso, A., and DeGaetano, A. 2009. Climate change and the geography of weed damage: Analysis of U.S. maize systems suggests the potential for significant range transformations. Agric. Ecosyst. Environ. 130:131140.Google Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z-C. 2007. Global climate projections. Pages 747845 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK Cambridge University Press.Google Scholar
Nashiki, M., Suyama, T., Meguro, R., and Kato, T. 1991. In vitro dry matter digestibility and chemical composition of Rumex obtusifolius L. in pastures. Weed Res. Jpn. 36:118125.Google Scholar
Oswald, A. K. and Haggar, R. J. 1983. The effects of Rumex obtusifolius on the seasonal yield of two mainly perennial ryegrass swards. Grass For. Sci. 38:187191.Google Scholar
Page, V. and Feller, U. 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann. Bot. 96:425434.Google Scholar
Page, V., Blösch, R. M., and Feller, U. 2012. Regulation of shoot growth, root development and manganese allocation in wheat (Triticum aestivum) genotypes by light intensity. Plant Growth Regul. 67:209215.Google Scholar
Page, V., Weisskopf, L., and Feller, U. 2006. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol. 171:329341.Google Scholar
Patterson, D. T. 1995a. Effects of environmental stress on weed/crop interactions. Weed Sci. 43:483490.Google Scholar
Patterson, D. T. 1995b. Weeds in a changing climate. Weed Sci. 43:685700.Google Scholar
Peñuelas, J., Prieto, P., Beier, C., Cesaraccio, C., de Angelis, P., de Dato, G., Emmett, B. A., Estiarte, M., Garadnai, J., Gorissen, A., Lang, E. K., Kroel-Dulay, G., Llorens, L., Pellizzaro, G., Riis-Nielsen, T., Schmidt, I. K., Sirca, C., Sowerby, A., Spano, D., and Tietema, A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Global Change Biol. 13:25632581.Google Scholar
R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna, Austria R Foundation for Statistical Computing, ISBN: 3-900051-07-0, http://www.R-project.org.Google Scholar
Riesen, O. and Feller, U. 2005. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J. Plant Nutr. 28:421430.Google Scholar
Schenk, D. and Feller, U. 1990. Rubidium export from individual leaves of maturing wheat. J. Plant Physiol. 137:175179.Google Scholar
Strnad, L., Hejcman, M., Křišt'álová, V., Hejcmanová, P., and Pavlů, V. 2010. Mechanical weeding of Rumex obtusifolius L. under different N, P and K availabilities in permanent grassland. Plant Soil Environ. 56:393399.Google Scholar
Voigtländer, G., Lang, V., and Kühbauch, W. 1976. Metabolism of reserve carbohydrates of Rumex obtusifolius and Polygonum bistorta . Landwirtsch. Forsch. 29:109117.Google Scholar
Weisshuhn, K., Auge, H., and Prati, D. 2011. Geographic variation in the response to drought in nine grassland species. Basic Appl. Ecol. 12:2128.Google Scholar
Zaller, J. G. 2004a. Competitive ability of Rumex obtusifolius against native grassland species: above- and belowground allocation of biomass and nutrients. J. Plant Dis. Prot. 19:345351.Google Scholar
Zaller, J. G. 2004b. Ecology and non-chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): a review. Weed Res. 44:414432.Google Scholar
Zeller, S. and Feller, U. 1998. Redistribution of cobalt and nickel in detached wheat shoots: effects of steam-girdling and of cobalt and nickel supply. Biol. Plant. 41:427434.Google Scholar