Published online by Cambridge University Press: 12 June 2017
Studies were conducted from 1987 to 1990 to measure the dynamics of sicklepod established at subeconomic threshold populations in a peanut-cotton-corn cropping system. The experimental site had no native populations of sicklepod prior to initiation of the study. Main plots were crops in the rotation sequence plus continuous summer fallow (no crop). Subplots were: sicklepod established in the initial year of the study, sicklepod established every year of the study, and no sicklepod. Sicklepod was established at subeconomic threshold densities to simulate weed survival and seed production in fields where economic thresholds were the basis for weed management decisions. Sicklepod growing alone in fallow plots produced more seed per plant, resulting in significantly more seedlings throughout the study than sicklepod growing with crops. Sicklepod growing in corn produced the fewest seed per plant. Seed produced from subeconomic threshold densities established only in the first year caused 7-, 21-, and 20-fold increases in sicklepod populations during the next three seasons compared to the nontreated control.