Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T10:15:37.921Z Has data issue: false hasContentIssue false

Early Detection of Systemic Rust Infections of Dyers Woad (Isatis tinctoria) Using the Polymerase Chain Reaction

Published online by Cambridge University Press:  12 June 2017

Bradley R. Kropp
Affiliation:
Dep. Biol., Utah State Univ., Logan, UT 84322
Steve Albee
Affiliation:
Dep. Biol., Utah State Univ., Logan, UT 84322
Karen M. Flint
Affiliation:
Dep. Biol., Utah State Univ., Logan, UT 84322
Paul Zambino
Affiliation:
Dep. Biol., Utah State Univ., Logan, UT 84322
Les Szabo
Affiliation:
USDA, ARS, Cereal Rust Lab. 151 Lindig St., St. Paul, MN 55108
Sherman V. Thomson
Affiliation:
USDA Forest Serv., Forestry Sci. Lab, 5985 Hwy K, P.O. Box 898, Rhinelander, WI 54501

Abstract

Rust-specific polymerase chain reaction (PCR) primers selectively amplified ribosomal DNA of a rust fungus from infected dyers woad. PCR enabled DNA of the fungus to be detected in symptomatic plants as well as in asymptomatic parts of diseased plants. The use of PCR enabled early detection of rust infections in dyers woad plants during their first season when they are often asymptomatic Dried plant samples stored at room temperature for several months worked as well as lyophilized material for DNA extraction prior to PCR. The PCR detection method should greatly facilitate further studies on the biology and inoculation of this and other systemic rusts that have potential for use in biocontrol of weeds.

Type
Special Topics
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Arthur, J. C. 1929. Page 307 in The Plant Rusts. John Wiley & Sons, Inc., New York.Google Scholar
2. Arthur, J. C. and Cummins, G. B. 1962. Page 239 in Manual of the Rusts in the United States and Canada. 2nd edition. Hafner Publishing Co., New York.Google Scholar
3. Callihan, R. H., Dewey, S. A., Patton, J. E., and Thill, D. C. 1984. Distribution, biology and habitat of dyers woad (Isatis tinctoria L.) in Idaho. J. Idaho Acad. Sci. 20:1832.Google Scholar
4. Dewey, S. A., Price, K. P., and Ramsey, D. 1991. Satellite remote sensing to predict potential distribution of dyers woad (Isatis tinctoria). Weed Technol. 5:479484.CrossRefGoogle Scholar
5. Evans, J. O. and Chase, R. L. 1981. Dyers woad control. Utah State Univ. Ext. Bull. EL-199.Google Scholar
6. Evans, J. O. 1991. The importance, distribution, and control of dyers woad (Isatis tinctoria). Pages 387396 in James, L. F., Evans, J. O., Ralphs, M. H., and Child, R. D., eds. Noxious Range Weeds, Westview Press, San Francisco.Google Scholar
7. Farah, K. O., Tanaca, A. F., and West, N. F. 1988. Autoecology and population biology of dyers woad (Isatis tinctoria). Weed Sci. 36:186193.Google Scholar
8. Flint, K. M., Thomson, S. V., Dewey, S., and Evans, J. 1993. Timing of infection of dyers woad (Isatis tinctoria L.) by a Puccinia rust under field conditions. Proc. Western Soc. Weed Sci. 46:116.Google Scholar
9. French, R. C. and Lightfield, A. R. 1990. Induction of systemic aecial infection in Canada Thistle (Cirsium arvense) by teliospores of Puccinia punctiformis . Phytopathology. 80:872877.Google Scholar
10. Georgiev, O. I., Nillaev, N., Hadjiolov, A. A., Skryabin, K. G., Zakharyev, V. M., and Bayev, A. A. 1981. The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae . Nucleic Acid Res. 9:69536959.Google Scholar
11. Gueho, E., Kurtzman, C. P., and Peterson, S. W. 1989. Evolutionary affinities of heterobasidiomycetous yeasts estimated from the 18S and 25S ribosomal RNA sequence divergence. Syst. Appl. Microbiol. 13:230236.Google Scholar
12. Liu, Z., Szabo, L. J., and Bushnell, W. R. 1993. Molecular cloning and analysis of abundant and stage-specific mRNAs from Puccinia graminis . Mol. Plant-Microbe Interactions 6:8491.Google Scholar
13. Lovic, B. R. 1991. Two potential biocontrol strategies: Puccinia thlaspeos Schub. for Isatis tinctoria (dyers woad), and sugar beet associated bacteria for Phoma betae . MS Thesis, Utah State Univ., Logan, UT. 86 pp.Google Scholar
14. Lovic, B. R., Dewey, S. A., Evans, J. O., and Thomson, S. V. 1988. Puccinia thlaspeos—a possible biocontrol agent for dyers woad. Proc. Western Soc. Weed Sci. 41:5557.Google Scholar
15. Rollins, R. C. 1993. Page 521 in The Cruciferae of continental North America Stanford University Press, Stanford.Google Scholar
16. Strausbaugh, Perry D. and Core, E. L. 1978. Page 424 in Flora of West Virginia. 2nd Edition. Seneca Books, Inc. Grantsville, WV.Google Scholar
17. Te Beest, D.O., Yang, X.B. and Cisar, C.R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopath. 30:637657.Google Scholar
18. Varga, W. A. and Evans, J. O. 1978. Pages 8789 in Dyer's woad: from cultivated to cursed. Utah Science, Sept. 1978.Google Scholar
19. West, N. E. and Farah, K. O. 1989. Effects of clipping and sheep grazing on dyers woad. J. Range Manage. 42:510.CrossRefGoogle Scholar
20. Young, J. A. and Evans, R. A. 1971. Germination of dyers woad. Weed Sci. 19:7678.Google Scholar
21. Zambino, P. J. and Szabo, L. J. 1993. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia 85:401414.Google Scholar