Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T04:23:51.520Z Has data issue: false hasContentIssue false

Ecological bases of interactions between weeds and organisms in other pest categories

Published online by Cambridge University Press:  20 January 2017

Robert F. Norris*
Affiliation:
Weed Science Program, Department of Plant Science, University of California, Davis, CA 95616; rfnorris@ucdavis.edu

Abstract

Interactions between weeds and organisms in other pest categories are inevitable. Weeds are plants and therefore ecologically are producers. All other pest organisms are consumers; they are herbivores or pathogens and can thus use weeds directly as a food source. Beneficial organisms are primary carnivores that feed on herbivores; weeds can support beneficials indirectly when they feed on herbivores living on weeds. Weeds can also serve to mask crop plants from herbivore pests; the mechanisms by which this occurs are still debated. Presence of a weed canopy modifies ecosystem microclimate and provides shelter for pests and beneficials that would otherwise not survive. Tactics used to control pests can have impacts on nontarget organisms in other pest categories. Changes in tillage for weed control can impact population development of other pests. Pesticides can affect nontarget organisms resulting in unanticipated changes in crop tolerance and pest control. Development of true integrated pest management programs requires a multidisciplinary approach that incorporates interactions between organisms in different pest categories.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

All, J. N. and Musick, G. J. 1986. Management of vertebrate and invertebrate pests. Pages 347387 in Sprague, M. A. and Triplett, G. B. eds. No-tillage and surface-tillage agriculture: The tillage revolution. New York: J. Wiley.Google Scholar
Allen, W. W. and Smith, R. F. 1958. Some factors influencing the efficiency of Apantales medicaginis Meusebeck (Hymenoptera: Braconidae) as a parasite of the alfalfa caterpillar, Colias philodice eurytheme Boisduval. Hilgardia 28:142.CrossRefGoogle Scholar
Altman, J. 1993. Pesticide Interactions in Crop Production. Boca Raton, FL: CRC. 592 p.Google Scholar
Andow, D. A. 1988. Management of weeds for insect manipulation in agroecosystems. Pages 265301 in Altieri, M. A. and Liebman, M. eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC.Google Scholar
Bendixen, L. C., Kim, K. U., Kozak, C. M., and Horn, D. J. 1981. An annotated bibliography of weeds as reservoirs of organisms affecting crops. IIa. Arthropods. Wooster, OH: Ohio Agricultural Research Development Center. 117 p.Google Scholar
Chapin, F. S., Matson, P. A., and Mooney, H. A. 2002. Principles of Terrestrial Ecosystem Ecology. New York: Springer. 436 p.CrossRefGoogle Scholar
Cohen, J. E., Beaver, R. A., and Cousins, S. H. et al. 1993. Improving food webs. Ecology 74:252258.Google Scholar
Cowgill, S. E., Wratten, S. D., and Sotherton, N. W. 1993. The effect of weeds on the numbers of hoverfly (Diptera: Syrphidae) adults and the distribution and composition of their eggs in winter wheat. Ann. Appl. Biol 123:499515.Google Scholar
Doutt, R. L. and Nakata, J. 1973. The Rubus leafhopper and its egg parasitoid: an endemic biotic system useful in grape pest management. Environ. Entomol 2:381386.Google Scholar
Duffus, J. E. 1971. Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol 9:319340.Google Scholar
Edwards, P. J. and Wratten, S. D. 1980. Ecology of insect–plant interactions. London: Edward Arnold. 60 p.Google Scholar
Eigenbrode, S. D. and Shelton, A. M. 1992. Survival and behaviour of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S-ethyl dipropylthiocarbamate. Entomol. Exp. Appl 62:139145.Google Scholar
Fenner, F. and Fantini, B. 1999. Biological Control of Vertebrate Pests: The History of Myxomatosis; an Experiment in Evolution. Wallingford, UK, and New York: CABI. 339 p.Google Scholar
Finch, S. and Collier, R. H. 2000. Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. Appl 96:91102.Google Scholar
Genung, W. G. 1959. Ecological and cultural factors affecting chemical control of subterranean cutworms in the Everglades. Fla. State Hort. Soc 72:163167.Google Scholar
Greisbach, E. and Eisbein, K. 1975. Die Beteutung von Unkräutern für die Übertragung von Rhizoctonia solani Kühn III. Der Einfluss der Unkräuter auf den Befall der Kartoffeln. Zbl. Bakt. Abt. II 130:745760. [In German].Google Scholar
Gu, H. and Walter, G. H. 1999. Is the common sowthistle (Sonchus oleraceus) a primary host plant of the cotton bollworm, Helicoverpa armigera (Lep., Noctuidae)? Oviposition and larval performance. J. Appl. Entomol 123:99105.CrossRefGoogle Scholar
Hagley, E. A. C. and Barber, D. R. 1992. Effect of food sources on the longevity and fecundity of Pholetesor ornigis (Weed) (Hymenoptera, Braconidae). Can. Entomol 124:341346.Google Scholar
Hammond, R. B. 1986. Phytotoxic interactions among phorate, metribuzin, and certain soybean cultivars. J. Econ. Entomol 79:13381342.Google Scholar
Hooper, D. J. and Stone, A. R. 1981. Role of wild plants and weeds in the ecology of plant parasitic nematodes. Pages 199215 in Thresh, J. M. ed. Pests, Pathogens and Vegetation. London: Pitman Books.Google Scholar
Hopkins, A. R., Taft, H. M., and James, W. 1972. Comparison of mechanical cultivation and herbicides on emergence of bollworms and tobacco budworms. J. Econ. Entomol 65:870872.CrossRefGoogle Scholar
Idris, A. B. and Grafius, E. 1995. Wildflowers as nectar sources for Diadegma insulare (Hymenoptera; Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ. Entomol 24:17261735.CrossRefGoogle Scholar
Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., and Dawah, H. A. 1993. Flower-visiting by hymenopteran parasitoids. J. Nat. Hist 27:67105.Google Scholar
Khodayari, K., Smith, R. J., and Tugwell, N. P. 1986. Interaction of propanil and selected insecticides on rice (Oryza sativa). Weed Sci 34:800803.Google Scholar
Lichtenstein, E. P., Liang, T. T., and Anderegg, B. N. 1973. Synergism of insecticides by herbicides. Science 181:847849.Google Scholar
Manuel, J. S., Bendixen, L. E., and Riedel, R. M. 1982. An annotated bibliography of weeds as reservoirs for organisms affecting crops. Ia. Nematodes. Research Bulletin 1146. Wooster, OH: Ohio Agricultural Research Development Center, Ohio State University. 34 p.Google Scholar
Matsunaka, S. 1968. Propanil hydrolysis inhibition in rice plants by insecticides. Science 160:13601361.Google Scholar
Michailides, T. J. and Spotts, R. A. 1991. Effects of certain herbicides on the fate of sporangiospores of Mucor piriformis and conidia of Botrytis cinerea and Penicillium expansum . Pestic. Sci 33:1122.Google Scholar
Moffett, J. O., Morton, H. L., and Macdonald, R. H. 1972. Toxicity of some herbicidal sprays to honey bees. J. Econ. Entomol 65:3236.Google Scholar
Monteith, J. L. 1973. Principles of Environmental Physics. New York: American Elsevier. 241 p.Google Scholar
Ngugi, H. K., Scherm, H., and NeSmith, D. S. 2002. Distribution of pseudosclerotia of Monilinia vaccinii-corymbosi and risk of apothecial emergence following mechanical cultivation. Phytopathol 92:877883.CrossRefGoogle ScholarPubMed
Norris, R. F., Caswell-Chen, E. P., and Kogan, M. 2003. Concepts in Integrated Pest Management. Upper Saddle River, NJ: Prentice-Hall. 586 p.Google Scholar
Norris, R. F. and Kogan, M. 2000. Interactions between weeds, arthropod pests and their natural enemies in managed ecosystems. Weed Sci 48:94158.Google Scholar
Oka, I. N. and Pimentel, D. 1976. Herbicide (2,4-D) increases insect and pathogen pests on corn. Science 193:239240.Google Scholar
Pike, K. S. and Glazer, M. 1982. Strip rotary tillage: a management method for reducing Fumibotys fumalis (Lepidoptera: Pyralidae) in peppermint. J. Econ. Entomol 75:11361139.Google Scholar
Pimm, S. L. 2002. Food Webs. Chicago: University of Chicago Press. 219 p.Google Scholar
Polis, G. A. and Winemiller, K. O. eds. 1996. Food Webs: Integration of Patterns & Dynamics. New York: Chapman & Hall.Google Scholar
Putnam, A. R. and Penner, D. 1974. Pesticide interactions in higher plants. Residue Rev 50:73110.Google Scholar
Smith, R. J. J. and Tugwell, N. P. 1975. Propanil–carbofuran interactions in rice. Weed Sci 23:176178.Google Scholar
Sutic, D. D., Ford, R. E., and Tosic, M. T. 1999. Handbook of Plant Virus Diseases. Boca Raton, FL: CRC.CrossRefGoogle Scholar
Vyas, S. C. 1988. Nontarget Effects of Agricultural Fungicides. Boca Raton, FL: CRC. 258 p.Google Scholar
Willmer, P. G. 1982. Microclimate and the environmental physiology of insects. Pages 157 in Berridge, M. J., Treherne, J. E., and Wigglesworth, V. B. eds. Advances in Insect Physiology. London: Academic.Google Scholar
Wilson, C. R. 1998. Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathol 47:171176.Google Scholar
Young, O. P. 1986. Host plants of the tarnished plant bug, Lygus lineolaris (Heteroptera: Miridae). Ann. Entomol. Soc. Am 79:747762.CrossRefGoogle Scholar