Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:04:21.985Z Has data issue: false hasContentIssue false

Effect of Temperature and Propanil on Penoxsulam Efficacy, Absorption, and Translocation in Alligatorweed (Alternanthera philoxeroides)

Published online by Cambridge University Press:  20 January 2017

Samuel D. Willingham*
Affiliation:
Department of Soil and Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843
Scott A. Senseman
Affiliation:
Department of Soil and Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843
Garry N. McCauley
Affiliation:
Department of Soil and Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843
James M. Chandler
Affiliation:
Department of Soil and Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843
*
Corresponding author's E-mail: swillingham@ag.tamu.edu

Abstract

Laboratory studies were conducted in 2006 and 2007 to evaluate the effects of temperature and propanil on alligatorweed control with penoxsulam. Biomass reduction of alligatorweed at 42 d after treatment (DAT) compared to nontreated was greatest at 21/11 C (day/night) compared to 26/18 C or 30/25 C for all treatments. Propanil plus penoxsulam reduced biomass less than penoxsulam applied alone, independent of temperature. At 21 and 27 C, delaying propanil application 3 d after penoxsulam provided similar biomass reduction to penoxsulam applied alone. At 27 C and 30 C, delaying propanil application 10 d after treatment was required to achieve biomass reduction greater or equal to penoxsulam applied alone. Absorption and translocation of 14C penoxsulam indicated that propanil reduced absorption of penoxsulam into the treated leaf of alligatorweed 48 h after treatment. This research demonstrates the potential for propanil to antagonize penoxsulam when applied to alligatorweed. Under the most severe antagonistic conditions (30 C) propanil applications following penoxsulam needed to be delayed 10 d to avoid antagonism.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Boydston, R., Parker, R., and Fuerst, E. P. 1992. Atrazine phytotoxicity to common bean and redroot pigweed under different temperatures. Weed Sci. 40:364370.Google Scholar
Barnes, J. W. and Oliver, L. R. 2004. Cloransulam antagonixes annual grass control with aryloxyphenoxypropionate graminicide but not cyclohexanediones. Weed Technol. 18:763772.Google Scholar
Bauer, T. A., Renner, K. A., and Penner, D. 1995a. Olathe pinto bean (Phaseolus vulgaris) response to postemergence imazethapyr and bentazone. Weed Sci. 43:276282.Google Scholar
Bauer, T. A., Renner, K. A., and Penner, D. 1995b. Response of selected weed species to postemergence imazethapyr and bentazone. Weed Technol. 9:236242.Google Scholar
Bowmer, K. H. and Eberbach, P. L. 1993. Uptake and translocation of 14C-glyphosate in Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed). II. Effect of plant size and photoperiod. Weed Res. 33:5967.Google Scholar
Bowmer, K. H., Eberbach, P. L., and McCorkelle, G. 1993. Uptake and translocation of 14C-glyphosate in Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed). I. Rhizome concentrations required for inhibition. Weed Res. 33:5357.Google Scholar
Braverman, M. P. and Jordan, D. L. 1996. Efficacy of KIH-2023 in dry- and water-seeded rice (Oryza sativa). Weed Technol. 10:876882.Google Scholar
Buehring, N. W., Talbert, R. E., and Baldwin, F. L. 2006. Interaction of graminicides with other herbicides applied to rice (Oryza sativa). Weed Technol. 20:215220.CrossRefGoogle Scholar
Buman, R. A., Gealy, D. R., and Ogg, A. G. Jr. 1992. Effect of temperature on root absorption of metribuzin and its ethylthio analog by winter wheat (Triticum aestivum), jointed goatgrass (Aegilops cylindrical), and downy brome (Bromus tectorum). Weed Sci. 40:517521.CrossRefGoogle Scholar
Carey, V. F., Rich, G. R., and Odle, W. C. 2000. A developmental summary of rice weed control with Regiment (bispyribac-sodium). Proc. South. Weed Sci. Soc. 53:171.Google Scholar
Coupland, D. 1983. Influence of light, temperature, and humidity, on the translocation and activity of glyphosate in Elymus repens . Weed Res. 23:347349.Google Scholar
Culpepper, A. S., York, A. C., Jennings, K. M., and Batts, R. B. 1998. Interaction of bromoxynil and postemergence graminicides on large crabgrass (Digitaria sanguinalis). Weed Technol. 12:554559.Google Scholar
Culpepper, A. S., York, A. C., Jordan, D. L., Corbin, F. T., and Sheldon, Y. S. 1999. Basis for antagonism in mixtures of bromoxynil plus quizalofop-P applied to yellow foxtail (Setaria glauca). Weed Technol. 13:515519.Google Scholar
Devine, M. D., Bestman, H. D., and Vandenborn, W. H. 1990. Physiological basis for the different phloem mobilities of chlorsulfuron and clopyralid. Weed Sci. 38:19.Google Scholar
Fuerst, E. P. and Norman, M. A. 1991. Interactions of herbicides with photosynthetic electron transport. Weed Sci. 39:458464.Google Scholar
Geier, P. W., Stahlman, P. W., and Harett, J. G. 1999. Environmental and application effects on MON 37500 efficacy and phytoxicity. Weed Sci. 47:736739.CrossRefGoogle Scholar
Hager, A. G., Renner, K. A., Schabenberger, O., and Penner, D. 1999. Soil moisture, relative humidity, and bentazone affect on imazethapyr absorption and translocation in common ragweed (Ambrosia artemisiifolia). Weed Technol. 13:320323.Google Scholar
Harrison, A. M., Hayes, R. M., and Mueller, T. C. 1996. Environment effects cotton and velvetleaf response to pyrithiobac. Weed Sci. 44:241247.CrossRefGoogle Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatability of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4:128133.Google Scholar
Hsaio, T. C. 1973. Plant response to water stress. Plant Physiol. 24:519570.Google Scholar
Hull, H. M., Morton, H. L., and Wharrie, J. R. 1975. Environmental influences on cuticle development and resultant foliar penetration. Bot. Rev. 41:421452.Google Scholar
Julien, M. and Broadbent, J. 1980. The biology of Australian weeds. 3 Alternanthera philoxeroides (Mart.) Griseb. Australian Inst. Agric. Sci. 46:150155.Google Scholar
Jordan, D. L., Sanders, D. E., Linscombe, S. D., and Williams, B. J. 1998. Response of four rice (Oryza sativa) cultivars to triclopyr. Weed Technol. 12:254257.Google Scholar
Kent, L. M., Wills, G. D., and Shaw, D. R. 1991. Effect of ammonium sulfate, imazapyr, and environment on the phototoxicity of imazethapyr. Weed Technol. 5:202205.Google Scholar
Koo, S. J., Kim, J. S., Kim, J. S., and Kang, S. H. 2000. Antagonistic interaction of propanil and pyribenzoxim on barnyard grass control. Pesticide Biochem. Physiol. 67:4653.Google Scholar
Kudsk, P., Olsen, T., and Thonke, K. E. 1990. The influence of temperature, humidity, and simulated rain on the performance of thiameturon-methyl. Weed Res. 30:261269.Google Scholar
O'Barr, J. H., McCauley, G. N., Langston, V. B., and Chandler, J. M. 2004. Alligatorweed (Alternanthera philoxeroides) control in rice with DE-638. Proc. South. Weed Sci. Soc. 57:71.Google Scholar
Olson, B. L. S., Al-Khatib, K., Stahlman, P., Parrish, S., and Moran, S. 1999. Absorption and translocation of MON 37500 in wheat and other grass species. Weed Sci. 47:3740.Google Scholar
Palmer, E. W., Shaw, D. R., and Holloway, J. C. Jr. 2000. Broadleaf weed control on soybean (Glycine max) with CGA-277476 and four postemergence herbicides. Weed Technol. 14:617623.Google Scholar
Pellerin, K. J., Webster, E., Zhang, W., and Blouin, D. C. 2004. Potential use of imazethapyr mixtures in drill-seeded imidazolinone-resistant rice (Oryza sativa). Weed Technol. 18:10371042.CrossRefGoogle Scholar
Scherder, E. F., Talbert, R. E., and Lovelace, M. L. 2005. Antagonism of cyhalofop grass activity by halosulfuron, triclopyr, and propanil. Weed Technol. 19:934941.CrossRefGoogle Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America.Google Scholar
Shaner, D. L. and O'Connor, S. L. 1991. Influence of environmental factors on the biological activity of the imidazolinone herbicides. Pages 103127. in. The Imidazolinone Herbicides. Boca Raton, FL CRC.Google Scholar
Shaw, D. R. and Wesley, M. T. 1993. Interacting effects on absorption and translocation from tank mixtures of ALS-inhibiting and diphenylether herbicides. Weed Technol. 7:693698.Google Scholar
Stauber, L. G., Nastasi, P., Smith, R. J., Baltazar, A. M., and Talbert, R. E. 1991. Barnyardgrass (Echinochloa crus-galli) and bearded sprangletop (Leptochloa fascicularis) control in rice. Weed Technol. 5:337344.Google Scholar
Tucker, T. A., Langeland, K. A., and Corbin, F. T. 1994. Absorption and translocation of 14C-imazapyr and 14C-glyphosate in alligatorweed (Alternanthera philoxeroides). Weed Technol. 8:3236.Google Scholar
Vidrine, P. R., Reynolds, D. B., and Blouin, D. C. 1995. Grass control in soybean (Glycine max) with graminicides applied alone and in mixtures. Weed Technol. 9:6872.Google Scholar
Webster, E. P., Baldwin, F. L., and Dillon, T. L. 1999. The potential for clomazone use in rice (Orysa sativa). Weed Technol. 13:390393.Google Scholar
Webster, E. P., Leon, C., Mudge, C., Zhang, W., and Griffin, M. 2003. Weed science annual research report. Baton Rouge, LA Louisiana State University Agricultural Center.Google Scholar
Webster, T. M. 2000. Weed survey—southern states. Proc. South. Weed Sci. Soc. 53:247256.Google Scholar
Webster, T. M. 2004. Weed survey—southern states. Proc. South. Weed Sci. Soc. 57:404426.Google Scholar