Article contents
Enhancing the margin of selectivity of RPA 201772 in Zea mays with antidotes
Published online by Cambridge University Press: 12 June 2017
Abstract
The antidotes dichlormid, MON-4660, CGA-154281, R-29148, and MON-13900 were tested in the greenhouse to protect Zea mays L. (corn) against RPA 201772 injury. High rates of RPA 201772 injured four Z. mays hybrids > 30%. R-29148 and MON-13900 were the most effective of the five antidotes evaluated. R-29148 applied at rates ⩾ 45 g ha−1 provided excellent protection against RPA 201772 injury and also prevented injury to Z. mays from diketonitrile, the active metabolite of RPA 201772. In laboratory studies, R-29148 did not alter absorption of 14C-RPA 201772 from soil; however, R-29148 significantly enhanced the rate of RPA 201772 metabolism and inactivation in Z. mays. The mixed function oxidase inhibitor piperonyl butoxide (PBO) increased RPA 201772 injury on all hybrids. These results demonstrate that Z. mays tolerance to RPA 201772 can be enhanced with the use of antidotes such as R-29148 and MON-13900, that R-29148 protects Z. mays from RPA 201772 and diketonitrile by the enhancement of metabolism, and that oxidative reactions may be involved in the metabolism of RPA 201772 in Z. mays.
Keywords
- Type
- Physiology, Chemistry, and Biochemistry
- Information
- Copyright
- Copyright © 1999 by the Weed Science Society of America
References
Literature Cited
- 12
- Cited by