Article contents
Evaluation of Factors That Influence Benghal Dayflower (Commelina benghalensis) Seed Germination and Emergence
Published online by Cambridge University Press: 20 January 2017
Abstract
A perennial species in its native range of Asia and Africa, Benghal dayflower in North America establishes annually from seed. This species has the unique ability to produce aerial and subterranean flowers and seeds. Information on how various environmental factors affect Benghal dayflower aerial and subterranean seed germination and emergence in the United States is lacking. Studies were conducted to determine the effect of temperature, planting depth, salt concentration, and pre-emergence herbicides on germination or emergence of aerial and subterranean Benghal dayflower seed. Maximum aerial seed germination occurred at 30 C, whereas maximum subterranean seed germination occurred at 30 and 35 C. Germination at 40 C was delayed relative to optimum temperatures. The seed coats in this study were mechanically disrupted to evaluate the response of seeds to temperature in the absence of physical dormancy. The physical dormancy imposed by the seed coat could require additional study. Benghal dayflower was not tolerant to ≥ 10 mM NaCl, indicating that this exotic species is not likely to become problematic in brackish marshes and wetlands of coastal plain regions. There was an inverse linear response of Benghal dayflower emergence and planting depth, with no emergence occurring at a planting depth of 12 cm. A field survey of Benghal dayflower emergence revealed that 42% of plants established from a depth of 1 cm in the soil profile, with 7 cm being the maximum depth from which seedlings plants could emerge. This suggests that PRE herbicides must remain in the relatively shallow depths of the soil profile to maximize control of germinating seedlings. Subterranean seeds were less sensitive than aerial seeds to S-metolachlor, the primary means of controlling this species in cotton. There were no differences between the germination of aerial and subterranean seed in response to treatment with diclosulam.
Keywords
- Type
- Weed Biology and Ecology
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 16
- Cited by