Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T21:06:44.308Z Has data issue: false hasContentIssue false

Evaluation of Plectosporium tabacinum for control of herbicide-resistant and herbicide-susceptible false cleavers

Published online by Cambridge University Press:  20 January 2017

Michelle Sulz
Affiliation:
Crop and Plant Management, Alberta Research Council, P.O. Bag 4000, Vegreville, Alberta, Canada T9C 1T4
Karen L. Bailey
Affiliation:
Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

A new strain of the fungus Plectosporium tabacinum was isolated from naturally-infected false cleavers plants and evaluated as a bioherbicide for the control of both herbicide-resistant and herbicide-susceptible false cleavers in canola. Plectosporium tabacinum was nonpathogenic to both Argentine canola and Polish canola and to both herbicide-tolerant and conventional cultivars. Plectosporium tabacinum killed false cleavers seedlings when applied at a concentration of 1 × 107 conidia ml−1 and provided with 16 h dew. The efficacy of P. tabacinum on herbicide-resistant false cleavers was identical to that on herbicide-susceptible false cleavers. Catchweed bedstraw was also highly susceptible to P. tabacinum. Further host-range tests on 34 plant species in 26 genera and 12 families demonstrated that P. tabacinum is sufficiently host specific for false cleavers control in western Canada. This fungus may provide a novel approach for managing herbicide-resistant false cleavers.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bost, S. C. and Mullins, C. A. 1992. A blight of cucurbits caused by Microdochium tabacinum . Plant Dis. 76:861. [Abstract]Google Scholar
Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. Pages 2457 In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman & Hall.Google Scholar
Chung, Y. R., Koo, S. J., Kim, H. T., and Cho, K. Y. 1998. Potential of an indigenous fungus, Plectosporium tabacinum, as a mycoherbicide for control of arrowhead (Sagittaria trifolia). Plant Dis. 82:657660.Google Scholar
Craemer, C., Sobhian, R., McClay, A. S., and Amrine, J. W. 1999. A new species of Cecidophyes (Acari: Eriophyidae) from Galium aparine (Rubiaceae) with notes on its biology and potential as a biological control agent for Galium spurium . Int. J. Acarol. 25:255263.Google Scholar
Farr, D. F., Bills, G. F., Chamuris, G. P., and Rossman, A. Y. 1989. Fungi of Plants and Plant Products in the United States. St. Paul, MN: APS Press. pp. 109111.Google Scholar
Ginns, J. H. 1986. Compendium of Plant Disease and Decay Fungi in Canada 1960–1980. Ottawa, Ontario, Canada: Canadian Government Publishing Centre. pp. 5760.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York: J. Wiley. pp. 272315.Google Scholar
Hall, L. M., Stromme, K. M., Horsman, G. P., and Devine, M. D. 1998. Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 46:390396.Google Scholar
Horsfall, J. G. and Barrett, R. W. 1945. An improved grading system for measuring plant diseases. Phytopathology 35:655.Google Scholar
de Jong, M. D., Scheepens, P. C., and Zadocks, J. C. 1990. Risk analysis for biological control: a Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum . Plant Dis. 74:189194.Google Scholar
Makowski, R. M. D. 1993. Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f. sp. malvae . Phytopathology 83:12291234.Google Scholar
Malik, N. and Vanden Born, W. H. 1987a. Growth and development of false cleavers (Galium spurium L.). Weed Sci. 35:490495.Google Scholar
Malik, N. and Vanden Born, W. H. 1987b. False cleavers (Galium spurium L.) competition and control in rapeseed. Can. J. Plant Sci. 67:839844.Google Scholar
Malik, N. and Vanden Born, W. H. 1988. The biology of Canadian weeds. 86. Galium aparine L. and Galium spurium L. Can. J. Plant Sci. 68:481499.Google Scholar
Matta, A. 1978. Fusarium tabacinum (Beyma) W. Gams patogeno in natura su basilico e pomodoro. Riv. Patol. Veg. 14:119126.Google Scholar
Mortensen, K. 1998. Biological control of weeds using microorganisms. Pages 223248 In Boland, G. J. and Kuykendall, L. D., eds. Plant-Microbe Interactions and Biological Control. New York: Marcel Dekker.Google Scholar
Palm, M. E., Gams, W., and Nirenberg, H. I. 1995. Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina . Mycologia 87:397406.Google Scholar
Pascoe, I. G., Nancorrow, R. J., and Copes, C. J. 1984. Fusarium tabacinum on tomato and other hosts in Australia. Trans. Br. Mycol. Soc. 83:343345.Google Scholar
Saad, A. T. and Black, L. L. 1981. A new fungus disease of cucurbits. Phytopathology 71:902. [Abstract]Google Scholar
[SAS] Statistical Analysis Systems. 1990. SAS/STAT® User's Guide. Version 6, 4th ed, Volume 1. Cary, NC: Statistical Analysis Systems Institute. pp. 128.Google Scholar
Seifert, K. A. 1996. Plectosporium tabacinum, fungi canadenses No. 333. Can. J. Plant Pathol. 18:309311.CrossRefGoogle Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1999. Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis. 83:2428.Google Scholar
Thomas, A. G., Frick, B., and Hall, L. M. 1998a. Weed Population Shifts in Alberta. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada. 1 p.Google Scholar
Thomas, A. G., Frick, B., van Acker, R., and Joosse, D. 1998b. Weed Population Shifts in Manitoba. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada. 1 p.Google Scholar
Thomas, A. G., Frick, B., Wise, R. F., and Juras, L. T. 1998c. Weed Population Shifts in Saskatchewan. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada. 1 p.Google Scholar
Wapshere, A. J. 1974. A strategy for evaluating the safety of organisms for biological weed control. Ann. App. Biol. 77:201211.Google Scholar
Watson, A. K. 1985. Host specificity of plant pathogens in biological weed control. Pages 577586 In Delfosse, E. S., ed. Proceedings of the 6th International Symposium on Biological Control of Weeds, Ottawa, Ontario, Canada.Google Scholar
Watson, A. K. and Wymore, L. A. 1990. Identifying limiting factors in the biocontrol of weeds. Pages 305316 In Baker, R. R. and Dunn, P. E., eds. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. New York: Alan R. Liss.Google Scholar
Zazzerini, A. and Tosi, L. 1987. New sunflower disease caused by Fusarium tabacinum . Plant Dis. 71:1,0431,044.Google Scholar
Zhang, W. and Bailey, K. L. 2000. Biological control of cleavers (Galium spurium and G. aparine) with pathogenic fungi—exploration and discovery. Pages 117123 In Spencer, N. R., ed. Proceedings of the X International Symposium on Biological Control of Weeds, Bozeman, MT.Google Scholar