Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:11:31.208Z Has data issue: false hasContentIssue false

Expression of Metribuzin Sensitivity in Winter Wheat (Triticum aestivum) Populations

Published online by Cambridge University Press:  12 June 2017

R. L. Ratliff
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078
B. F. Carver
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078
T. F. Peeper
Affiliation:
Dep. Agron., Oklahoma State Univ., Stillwater, OK 74078

Abstract

Two winter wheat cultivars are known to differ in sensitivity to metribuzin: TAM W-101 (tolerant) and Vona (sensitive). Their reciprocal F1, reciprocal F2, and backcross populations were compared to determine the genetic expression of metribuzin sensitivity. TAM W-101 showed a much wider range of response to metribuzin than Vona with little overlap between the two distributions. Both sets of reciprocal F1 and F2 populations resembled Vona in metribuzin response, but the variances of maternal TAM W-101 populations exceeded those of maternal Vona populations. Genetic segregation in metribuzin response was expressed in TAM W-101/Vona F2 but not in Vona/TAM W-101 F2. The greater variability observed in the metribuzin-tolerant parent TAM W-101 and maternal TAM W-101 populations could not simply be interpreted as the result of differential sampling of male and female gametes from TAM W-101.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 29:316322.Google Scholar
2. Barrentine, W. L., Edwards, C. J. Jr., and Hartwig, E. E. 1976. Screening soybeans for tolerance to metribuzin. Agron. J. 68:351353.Google Scholar
3. Beversdorf, W. D. and Kott, L. S. 1987. Development of triazine resistance in crops by classical plant breeding. Weed Sci. 35, Suppl. 1:911.Google Scholar
4. Cockerham, C. C. 1986. Modifications in estimating the number of genes for a quantitative character. Genetics 114:659664.Google Scholar
5. Darr, S., Souza-Machado, V., and Arntzen, C. J. 1981. Uniparental inheritance of a chloroplast photosystem II polypeptide controlling herbicide binding. Biochem. Biophys. Acta 634:219228.Google Scholar
6. De Jong, H. 1983. Inheritance of sensitivity to the herbicide metribuzin in cultivated diploid potatoes. Euphytica 32:4148.Google Scholar
7. Edwards, C. J. Jr., Barrentine, W. L., and Kilen, T. C. 1976. Inheritance of sensitivity to metribuzin in soybeans. Crop Sci. 16:119120.Google Scholar
8. Fischer, M. L. 1983. Investigations on the differential tolerance of wheat cultivars to metribuzin. Ph.D. Thesis. Oklahoma State Univ., Stillwater, OK. 71 pp.Google Scholar
9. Gawronski, S. W. 1983. Tolerance of tomato (Lycopersicon esculentum) cultivars to metribuzin. Weed Sci. 31:525527.Google Scholar
10. Gawronski, S. W., Haderlie, L. C., and Stark, J. C. 1986. Metribuzin absorption and translocation in two barley (Hordeum vulgare) cultivars. Weed Sci. 34:491495.CrossRefGoogle Scholar
11. Graf, G. T. and Ogg, A. G. Jr. 1976. Differential responses of potato cultivars to metribuzin. Weed Sci. 24:137139.Google Scholar
12. Greaves, J. A. and Wilson, J. M. 1987. Chlorophyll fluorescence analysis – an aid to plant breeders. Biologist 34:209214.Google Scholar
13. Harris, M. and Camlin, M. S. 1988. Chlorophyll fluorescence as a rapid test for reaction to urea herbicides in winter wheat. J. Agric. Sci., Camb. 110:627632.Google Scholar
14. Harrison, H. F. Jr., Jones, A., and Dukes, P. D. 1985. Differential response of six sweet potato (Ipomoea batatas) cultivars to metribuzin. Weed Sci. 33:730733.Google Scholar
15. Harrison, H. F. Jr., Jones, A., and Dukes, P. D. 1987. Heritability of metribuzin tolerance in sweet potatoes (Ipomoea batatas). Weed Sci. 35:715719.CrossRefGoogle Scholar
16. Hartwig, E. E., Barrentine, W. L., and Edwards, C. J. Jr. 1980. Registration of Tracy-M soybeans. Crop Sci. 20:825.Google Scholar
17. Kilen, T. C. and Barrentine, W. L. 1983. Linkage relationships in soybean between genes controlling reactions to phytophthora rot and metribuzin. Crop Sci. 23:894896.Google Scholar
18. Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541553.CrossRefGoogle ScholarPubMed
19. Ratliff, R. L. 1986. Investigations on the basis and inheritance of metribuzin tolerance in winter wheat. Ph.D. Thesis. Oklahoma State Univ., Stillwater, OK. 39 pp.Google Scholar
20. Runyan, T. J., McNeil, W. K., and Peeper, T. F. 1982. Differential tolerance of wheat (Triticum aestivum) cultivars to metribuzin. Weed Sci. 30:9497.Google Scholar
21. Scott, K. R. and Putwain, P. D. 1981. Maternal inheritance of simazine resistance in a population of Senecio vulgaris . Weed Res. 21:137140.Google Scholar
22. Shaw, D. R., Peeper, T. F., and Nofziger, D. L. 1985. Comparison of chlorophyll fluorescence and fresh weight as herbicide bioassay techniques. Weed Sci. 33:2933.Google Scholar
23. Shaw, D. R., Peeper, T. F., and Nofziger, D. L. 1986. Evaluation of chlorophyll fluorescence parameters for an intact plant herbicide bioassay. Crop Sci. 26:756760.Google Scholar
24. Souza-Machado, V., Phatak, S. C., and Nonecke, I. L. 1982. Inheritance of tolerance of the tomato (Lycopersicon esculentum Mill.) to metribuzin herbicide. Euphytica 31:129138.Google Scholar
25. Steel, R. G. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. McGraw-Hill, New York. 633 pp.Google Scholar
26. Yaacoby, T., Schonfeld, M., and Rubin, B. 1986. Characteristics of atrazine-resistant biotypes of three grass weeds. Weed Sci. 34:181184.Google Scholar