Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T22:56:36.924Z Has data issue: false hasContentIssue false

The foxtail (Setaria) species-group

Published online by Cambridge University Press:  20 January 2017

Jack Dekker*
Affiliation:
Weed Biology Laboratory, Agronomy Department, Iowa State University, Ames, IA 50011; jdekker@iastate.edu

Abstract

The weedy Setaria species (giant, green, yellow, knotroot, and bristly foxtail) compose one of the worst weed groups interfering with world agriculture and in other disturbed and managed habitats. These species, together with their crop counterparts (foxtail millet, korali), form the foxtail species-group (spp.-gp). Five successive waves of Setaria spp. invasion from preagricultural times to the present have resulted in widespread infestation of the disturbed, arable, temperate regions of the earth. These invasions have resulted in considerable economic and environmental costs. The success of the Setaria spp.-gp is because of their intimate evolutionary relationship with humans, disturbance, agriculture, and land management. The ability to adapt rapidly to local conditions is the hallmark of this weedy group. Genotypic and phenotypic biodiversity provides this spp.-gp with traits that allow it to invade, colonize, adapt to, and endure in a wide range of habitats around the world. The phenotypic life-history traits important to the success of weedy Setaria spp. begin with the induction of dormancy in seed during embryogenesis. The formation of long-lived, heterogeneous seed pools in the soil is the inevitable consequence of the dormant seed rain. In soil seed pools, after-ripening, the occurrence and timing of seedling emergence, and the induction of secondary (summer) dormancy are regulated by seasonally and diurnally varying soil oxygen, water, and temperature signals. Precise and variable timing of seedling emergence ensures Setaria a dominant place in disturbed and managed communities during the growth and reproductive phases that follow. Once established in a community, phenotypic plasticity inherent in an individual weedy Setaria sp. allows it to maximize its growth, form, and reproduction to the specific local conditions it encounters, including competitive interactions with neighbors. Traits controlling the plastic development of plant architecture include the ability to form one or more tillering shoots whose stature and number are precisely sized to local conditions. A complex pattern of branching, from plant to spikelet, provides diverse microenvironments within which different levels of dormancy are induced in individual seeds on a panicle and among panicles on a common plant. Traits for adaptation to stress in weedy Setaria spp. include tolerance to many inhibitory chemicals (e.g., herbicides, salt), mechanical damage, and drought. Genetic traits such as self-pollination and small genome size contribute to a highly diverse collection of locally adapted genotypes and phenotypes ready to exploit any opportunities provided by a cropping system. Self-pollinating Setaria spp. exist in wild, weed, and crop variants, an ideal genetic condition ensuring both long-term stability and novelty. Weedy Setaria spp. populations have low to exceedingly low amounts of total genetic variation, unusually low intrapopulation genetic diversity, and unusually high genetic diversity between populations compared with an average plant species. These traits result spatially in local populations that are unusually homogeneous, typically consisting of a single multilocus genotype. Either a generally or a specifically adapted genotype of an individual species might predominate in that local population. Across the landscape, different single-genotype populations dominate particular local sites, providing novel genetics to the region by dispersal and gene flow when conditions change. Across North America, populations of green foxtail and knotroot foxtail are genetically differentiated along a north–south gradient. The history of invasion and colonization, the successful life histories of locally adapted weedy Setaria spp., and the evolutionary potential of this weed group emphasize the need for accurate prediction of its behavior. Weedy Setaria spp. management is the management of local selection pressure and consequent adaptation. Farmers, land managers, policy makers and regulators, homeowners, and consumers need accurate information about weedy Setaria spp. to predict and guide management decisions based on economics, risk, and environmental sustainability.

Type
Invited Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alex, J. F., Banting, J. D., and Gebhardt, J. P. 1972. Distribution of Setaria viridis in western Canada. Can. J. Plant Sci 52:129138.CrossRefGoogle Scholar
Allard, R. W. 1965. Genetic systems associated with colonizing ability in predominantly self-pollinated species. Page 588 in Baker, H. G. and Stebbins, G. L. eds. The Genetics of Colonizing Species. New York: Academic Press.Google Scholar
Anderson, R. N. 1968. Germination and Establishment of Weeds for Experimental Purposes. WSSA Handbook. Geneva: W.F. Humphrey Press. Pp. 170171.Google Scholar
Atchison, B. 2001. Relationships Between Foxtail (Setaria spp.) Primary Dormancy at Abscission and Subsequent Seedling Emergence. . Iowa State University, Ames, IA.Google Scholar
Baker, H. G. 1965. Characteristics and modes of origin of weeds. Pages 147172 in Baker, H. G. and Stebbins, G. L. eds. The Genetics of Colonizing Species. New York: Academic Press.Google Scholar
Baker, H. G. 1974. The evolution of weeds. Annu. Rev. Ecol. Syst 5:124.CrossRefGoogle Scholar
Banting, J. D., Molberg, E. S., and Gebhardt, J. P. 1973. Seasonal emergence and persistence of green foxtail. Can. J. Plant Sci 53:369376.CrossRefGoogle Scholar
Barbour, J. C. and Forcella, F. 1993. Predicting seed production by foxtails (Setaria spp). Proc. N. Cent. Weed Sci. Soc 48:100.Google Scholar
Barrau, J. 1958. Subsistence Agriculture in Melanesia. Honolulu, HI: Bernice P. Bishop Museum Bull. 219.Google Scholar
Barrett, S. C. H. and Husband, B. C. 1990. The genetics of plant migration and colonization. Pages 255277 in Brown, A.H.D., Clegg, M. T., Kahler, A. L., and Weir, B. C. eds. Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA: Sinauer.Google Scholar
Barrett, S. C. H. and Richardson, B. J. 1986. Genetic attributes of invading species. Pages 2133 in Groves, R. H. and Burdon, J. J. eds. Ecology of Biological Invasions. Canberra: Australian Academy of Science.Google Scholar
Barrett, S. C. H. and Shore, J. S. 1989. Isozyme variation in colonizing plants. Pages 106126 in Soltis, D. E. and Soltis, P. S. eds. Isozymes in Plant Biology. Portland, OR: Dioscorides.Google Scholar
Bewley, J. D. and Black, M. 1994. Seeds Physiology and Germination. 2nd ed. New York: Plenum Press.CrossRefGoogle Scholar
Black, C. C., Chen, T. M., and Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci 17:338344.CrossRefGoogle Scholar
Blackshaw, R. E., Stobbe, E. H., Shayewich, C. F., and Woodbury, W. 1981a. Influence of soil temperature and soil moisture on green foxtail (Setaria viridis) establishment in wheat (Triticum aestivum). Weed Sci 29:179184.Google Scholar
Blackshaw, R. E., Stobbe, E. H., and Sturko, A. R. W. 1981b. Effect of seeding dates and densities of green foxtail (Setaria viridis) on the growth and productivity of spring wheat (Triticum aestivum). Weed Sci 29:212217.Google Scholar
Bor, N. L. 1960. Grasses of Burma, Ceylon, India and Pakistan. International Monograph on Pure and Applied Biology. Volume 1. London: Pergamon Press.Google Scholar
Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet 13:115155.Google Scholar
Brown, A. H. D. and Marshall, D. R. 1981. Evolutionary changes accompanying colonization in plants. Pages 351363 in Scudder, G.C.E. and Reveal, J. L. eds. Evolution Today. Pittsburgh, PA: Hunt Institute for Botanical Documentation, Carnegie-Mellon University.Google Scholar
Bubar, C. J. and Morrison, I. N. 1984. Growth responses of green and yellow foxtail (Setaria viridis and Setaria lutescens) to shade. Weed Sci 32:774780.Google Scholar
Buhler, D. D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybeans in the central USA. Crop Sci 35:12471258.CrossRefGoogle Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997a. Implications of weed seed and seed bank dynamics to weed management. Weed Sci 45:329336.Google Scholar
Buhler, D. D., Hartzler, R. G., Forcella, F., and Gunsolus, J. L. 1997b. Relative Emergence Sequence for Weeds of Corn and Soybeans. Ames, IA: Iowa State University Extension Publ. SA-11.Google Scholar
Buhler, D. D. and Mester, T. C. 1991. Effect of tillage systems on the emergence depth of giant foxtail (Setaria faberi) and green foxtail (Setaria viridis). Weed Sci 39:200203.Google Scholar
Buhlmer, R. 1964. Edible seeds and prehistoric stone mortars in the highlands of New Guinea. Man 64:147150.CrossRefGoogle Scholar
Burnside, O. C., Fenster, C. R., Evetts, L. L., and Mumm, R. F. 1981. Germination of exhumed weed seed in Nebraska. Weed Sci 29:577586.Google Scholar
Callen, E. O. 1965. Food habits of some Pre-Columbian Mexican Indians. Econ. Bot 19:335343.CrossRefGoogle Scholar
Callen, E. O. 1967. The first New World cereals. Am. Antiquity 32:535538.Google Scholar
Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution to the DNA C-value paradox. J. Cell Sci 34:247278.CrossRefGoogle Scholar
Chambers, E. E. and Holm, L. G. 1965. Phosphorus uptake as influenced by associated plants. Weeds 13:312314.Google Scholar
Chang, K-C. 1973. Radiocarbon dates from China: some initial interpretations. Curr. Anthropol 14:525528.Google Scholar
Chapman, G. P. 1992a. Apomixis and evolution. Pages 138155 in Chapman, G. P. ed. Grass Evolution and Domestication. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Chapman, G. P. 1992b. Domestication and its changing agenda. Pages 316337 in Chapman, G. P. ed. Grass Evolution and Domestication. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Chase, A. 1937. First Book of Grasses. 2nd ed. San Antonio, TX. 94 p.Google Scholar
Cheng, K. 1973. Radio carbon dates from China: some initial interpretations. Curr. Anthropol 14:525528.Google Scholar
Chepil, W. S. 1946. Germination of weed seeds. I. Longevity, periodicity of germination and vitality of seed in cultivated soil. Sci. Agric 26:307347.Google Scholar
Chevalier, A. 1913. Etudes sur la Flore de l'Afrique Centrale Francaise. Paris. Pp. 108109.Google Scholar
Chevalier, A. 1932. Ressources vegetales du Sahara et de ses confins nord et sud. Mus. Hist. Nat. Lab. d'Agron. Coloniale Bull. Paris. Pp. 2528.Google Scholar
Clark, L. G. and Pohl, R. W. 1996. Agnes Chase's First Book of Grasses. 4th ed. London: Smithsonian Institution Press.Google Scholar
Clayton, W. D. 1980. Setaria . Pages 263264 in Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Webb, D. A. eds. Flora Europa. Volume 1. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. J. Theor. Biol 12:119129.Google Scholar
Corbineau, F. and Côme, D. 1995. Control of seed germination and dormancy by the gaseous environment. in Kigel, J. and Galili, G., eds. Seed Development and Germination. New York: Marcel Dekker. Pp. 397424.Google Scholar
Dalziel, J. M. 1937. The Useful Plants of West Africa. London: Crown Agents. Pp. 7175.Google Scholar
Darlington, H. T. 1951. The seventy year period of Dr. Beal's seed vitality experiment. Am. J. Bot 38:379381.Google Scholar
Darmency, H., Ouin, C., and Pernes, J. 1987a. Breeding foxtail millet (Setaria italica) for quantitative traits after interspecific hybridization and polyploidization. Genome 29:453456.CrossRefGoogle Scholar
Darmency, H., Zangre, G. R., and Pernes, J. 1987b. The wild-weed-crop complex in Setaria: a hybridization study. Genetica 75:103107.CrossRefGoogle Scholar
Dawkins, R. 1999. The Extended Phenotype. The Long Reach of the Gene. New York: Oxford University Press.Google Scholar
Dawson, J. H. and Bruns, V. F. 1962. Emergence of barnyardgrass, green foxtail and yellow foxtail seedlings form various soil depths. Weeds 10:136139.CrossRefGoogle Scholar
Dawson, J. H. and Bruns, V. F. 1975. Longevity of barnyardgrass, green foxtail and yellow foxtail seed in soil. Weed Sci 23:437440.CrossRefGoogle Scholar
Defelice, M. S., Brown, W. B., Aldrich, R. J., Sims, B. D., Judy, D. T., and Guethle, D. R. 1989. Weed control in soybeans (Glycine max) with reduced rates of postemergence herbicides. Weed Sci 37:365374.Google Scholar
Dekker, J. 1993. Pleiotropy in triazine resistant Brassica napus: leaf and environmental influences on photosynthetic regulation. Z. Naturforsch 48c:283287.Google Scholar
Dekker, J. 1999. Soil weed seed banks and weed management. J. Crop Prod 2:139166. [Simultaneously published in book format as Expanding the Context of Weed Management, D. Buhler, ed. New York: Haworth Press.Google Scholar
Dekker, J. 2000. Emergent weedy foxtail (Setaria spp.) seed germinability behavior. Pages 411423 in Black, M., Bradford, K. J., and Vasquez-Ramos, J. eds. Seed Biology: Advances and Applications. Wallingford, Great Britain: CAB International.Google Scholar
Dekker, J. 2003. The evolutionary biology of the foxtail (Setaria) species-group. in Inderjit, ed. Principles and Practices in Weed Management: Weed Biology and Management. The Netherlands: Kluwer. Invited review. In press.Google Scholar
Dekker, J., Dekker, B. I., Hilhorst, H., and Karssen, C. 1996. Weedy adaptation in Setaria spp.: IV. Changes in the germinative capacity of S. faberii embryos with development from anthesis to after abscission. Am. J. Bot 83:979991.Google Scholar
Dekker, J. and Hargrove, M. 2002. Weedy adaptation in Setaria spp.: V. Effects of gaseous environment on giant foxtail (Setaria faberii R. Hermm.) (Poaceae) seed germination. Am. J. Bot 89:410416.Google Scholar
Dekker, J., Lathrop, J., Atchison, B., and Todey, D. 2001. The weedy Setaria spp. phenotype: how environment and seeds interact from embryogenesis through germination. Proc. Br. Crop Prot. Conf.—Weeds 2001:6574.Google Scholar
Dekker, J. and Sharkey, T. D. 1992. Regulation of photosynthesis in triazine resistant and susceptible Brassica napus . Plant Physiol 98:10691073.Google Scholar
Dembinska, M. 1976. Wild corn plants gathered in the 9th to 13th centuries in light of paleobotanical materials. Folia Quat 47:97103.Google Scholar
Devos, K. M., Wang, Z. M., Beales, J., Sasaki, T., and Gale, M. D. 1998. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor. Appl. Genet 96:6368.CrossRefGoogle Scholar
de Wet, J. M. J. 1966. The origin of weediness in plants. Proc. Okla. Acad. Sci 1966:1417.Google Scholar
de Wet, J. M. J. 1992. The three phases of cereal domestication. Pages 176198 in Chapman, G. P. ed. Grass Evolution and Domestication. Cambridge, Great Britain: Cambridge University Press.Google Scholar
de Wet, J. M. J. 1995. Foxtail millet Setaria italica . Pages 170172 in Smartt, J. and Simmonds, N. W. eds. Evolution of Crop Plants. 2nd ed. Essex, Great Britain: Longman Scientific and Technical.Google Scholar
de Wet, J. and Harlan, J. 1975. Weeds and domesticates: evolution in the man-made habitat. Econ. Bot 29:99107.Google Scholar
de Wet, J. M. J., Oestry-Stidd, L. L., and Cubero, J. I. 1979. Origins and evolution of foxtail millets. J. Agric. Trop. Bot. Appl 26:5464.Google Scholar
Dexter, A. G., Nalawaja, J. D., Rasmussen, D. D., and Buchli, J. 1981. Survey of Wild Oats and Other Weeds in North Dakota. 1978 and 1979. Fargo, ND: North Dakota Agricultural Experiment Station Research Rep. 79. 6 p.Google Scholar
Dore, W. G. and McNeill, J. 1980. Grasses of Ontario. Hull, QC, Canada: Research Branch, Agriculture Canada, Monograph 26.Google Scholar
Douglas, B. J., Thomas, A. G., Morrison, I. N., and Maw, M. G. 1985. The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can. J. Plant Sci 65:669690.CrossRefGoogle Scholar
Dryden, R. D. and Whitehead, C. W. 1963. The effect of TCA on green foxtail in competition with cereals. Can. J. Plant Sci 43:451456.Google Scholar
Dunham, R. S., Robinson, R. G., and Anderson, R. N. 1958. Crop Rotation and Associated Tillage Practices for Controlling Annual Weeds in Flax and Reducing Weed Seed Populations of the Soil. St. Paul, MN: Minnesota Agricultural Experiment Station Technical Bull. 230. 19 p.Google Scholar
Elmore, C. D. and Paul, R. N. 1983. Composite list of C4 weeds. Weed Sci 31:686692.Google Scholar
Emery, W. H. P. 1957. A study of reproduction in Setaria macrostachya and its relatives in the southwestern United States and Northern Mexico. Bull. Torrey Bot. Club 84:106121.CrossRefGoogle Scholar
Fabian, I. 1938. Beitrage zum Lang- und Kurztagsproblem. Z. Bot 33:305357.Google Scholar
Fausey, J. C., Kells, J. J., Swinton, S. M., and Renner, K. A. 1997. Giant foxtail (Setaria faberi) interference in non-irrigated corn (Zea mays). Weed Sci 45:256260.Google Scholar
Fawcett, R. S. and Slife, F. W. 1978. Effects of 2,4-D and dalapon on weed seed production and dormancy. Weed Sci 26:543547.CrossRefGoogle Scholar
Flavell, R. 1980. The molecular characterization and organization of plant chromosomal DNA sequences. Annu. Rev. Plant Physiol 31:569596.CrossRefGoogle Scholar
Forcella, F., Wilson, R. G., and Dekker, J. et al. 1997. Weed seed bank emergence across the corn belt. Weed Sci 45:6776.CrossRefGoogle Scholar
Forcella, F., Wilson, R. G., Renner, K. A., Dekker, J., Harvey, R. G., Alm, D. A., Buhler, D. D., and Cardina, J. A. 1992. Weed seedbanks of the U.S. corn belt: magnitude, variation, emergence, and application. Weed Sci 40:636644.CrossRefGoogle Scholar
Fukunaga, K., Domon, E., and Kawase, M. 1997. Ribosomal DNA variation in foxtail millet, Setaria italica (L.) P. Beauv., and a survey of variation from Europe and Asia. Theor. Appl. Genet 95:751756.Google Scholar
Fukunaga, K., Wang, Z., Kato, K., and Kawase, M. 2002. Geographical variation of nuclear genome RFLPs and genetic differentiation of foxtail millet, Setaria italica (L.) P. Beauv. Genet. Res. Crop Evol 49:95101.Google Scholar
Gao, M. J. and Chen, J. J. 1988. Isozymic studies on the origin of cultivated foxtail millet. Acta Agron. Sin 14:131136.Google Scholar
Gregg, W. 1973. Ecology of the annual grass Setaria lutescens on old fields of the Pennsylvania Piedmont. Proc. Natl. Acad. Nat. Sci. Philadelphia 124:135196.Google Scholar
Haar, J. M. 1998. Characterization of Foxtail (Setaria spp.) Seed Production and Giant Foxtail (Setaria faberii) Seed Dormancy at Abscission. Ph.D. dissertation. Iowa State University, Ames, IA.Google Scholar
Hamrick, J. L. and Godt, M. J. W. 1990. Allozyme diversity in plant species. Pages 4363 in Brown, A.H.D., Clegg, M. T., Kahler, A. L., and Weir, B. S. eds. Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA: Sinauer.Google Scholar
Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173176.Google Scholar
Harlan, J. R. 1975. Crops and Man. Madison, WI: American Society of Agronomy and Crop Science Society.Google Scholar
Harlan, J. R., de Wet, J. M. J., and Price, E. G. 1973. Comparative evolution of cereals. Evolution 27:311325.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. New York: Academic Press. 892 p.Google Scholar
Harrison, S. K., Williams, C. S., and Wax, L. M. 1985. Interference and control of giant foxtail (Setaria faberi) in soybeans (Glycine max). Weed Sci 33:203208.CrossRefGoogle Scholar
Hattersley, P. W. and Watson, L. 1992. Diversification of photosynthesis. Pages 38116 in Chapman, G. P. ed. Grass Evolution and Domestication. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Heise, A. C. 1941. Germination of green foxtail seeds. Proc. Assoc. Off. Seed Anal 33:4344.Google Scholar
Helbaek, H. 1960. The paleobotany of the Near East and Europe. Pages 2940 in Braidwood, R. J. and Howe, B. eds. Prehistoric Investigations in Iraq Kurdistan. Chicago: Chicago University Press.Google Scholar
Hitchcock, A. S. 1971. Manual of the Grasses of the United States. 2nd ed., Volume 2. New York: Dover Public.Google Scholar
Ho, P-T. 1969. The loes and the origin of Chinese agriculture. Am. Hist. Rev 75:136.Google Scholar
Ho, P-T. 1975. The Cradle of the East. Chicago: Chicago University Press.Google Scholar
Hofmeister, W. 1868. Allgemeine Morphologie der Gewachse. Handbuch der Physiologischen Botanik. Volume 1, Pt. 2. Leipzig, Germany. Pp. 751768.Google Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. New York: J. Wiley.Google Scholar
Holm, L., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1979. A Geographic Atlas of World Weeds. New York: Wiley-Interscience, J. Wiley. Pp. 332333.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds—Distribution and Biology. Honolulu, HI: The East–West Food Institute. Pp. 108109.Google Scholar
Holm, R. E. and Miller, M. R. 1972. Weed seed germination responses to chemical and physical treatment. Weed Sci 20:150153.Google Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol 4:141149.Google Scholar
Hubbard, F. T. 1915. A taxonomic study of Setaria and its immediate allies. Am. J. Bot 2:169198.Google Scholar
Hume, L. 1982. The long-term effects of fertilizer application and three rotations on weed communities in wheat (after 21–22 years at Indian Head, Saskatchewan). Can. J. Plant Sci 62:741750.Google Scholar
James, A. L. 1968. Some Influences of Soil Atmosphere on Germination of Annual Weeds. Ph.D. dissertation. Iowa State University, Ames, IA.Google Scholar
Jusuf, M. and Pernes, J. 1985. Genetic variability of foxtail millet (Setaria italica Beauv.) electrophoretic studies of five isozyme systems. Theor. Appl. Genet 71:385391.Google Scholar
Kadkol, S. B. and Swaminathan, M. 1955. The nutritive value of Italian millet (Setaria italica). Sci. Cult 20:340341.Google Scholar
Kawano, S. and Miyake, S. 1983. The productive and reproductive biology of flowering plants. X. Reproductive energy allocation and propagule output of five congeners of the genus Setaria (Gramineae). Oecologia 57:613.Google Scholar
Kawase, K. and Sakamoto, S. 1984. Variation, geographical distribution and genetical analysis of esterase isozymes in foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet 67:529533.Google Scholar
Khosla, P. K. and Sharma, M. L. 1973. Cytological observations on some species of Setaria . Nucleus 26:3841.Google Scholar
Khosla, P. K. and Singh, S. 1971. Cytotaxonomical investigations on S. glauca Beauv. complex. 1st All India Congress on Cytology and Genetics 15. [Abstract].Google Scholar
Kihara, H. and Kishimoto, E. 1942. Bastarde Zwishen Setaria italica und S. viridis . Bot. Mag. Tokyo 56:6267.Google Scholar
King, L. J. 1952. Germination and control of the giant foxtail grass. Contr. Boyce Thompson Inst 16:469487.Google Scholar
Kishimoto, E. 1938. Chromosomenzahlen in den Gattungen Panicum und Setaria, part I. Chromosomenzahlen einier Setaria-Arten. Cytologia 9:2327.Google Scholar
Kivilaan, A. and Bandurski, R. S. 1973. The ninety year period for Dr. Beal's seed viability experiment. Am. J. Bot 60:140145.Google Scholar
Koernicke, F. and Werner, H. 1885a. Handbuch des Getreidesbaues. Volume 1. Berlin: Verlag von Paul Parey.Google Scholar
Koernicke, F. and Werner, H. 1885b. Handbuch des Getreidesbaues. Volume 2. Die Sorten und der Anbau des Getreides. Berlin: Verlag von Paul Parey.Google Scholar
Kollman, G. E. 1970. Germination-Dormancy and Promoter-Inhibitor Relationships in Setaria lutescens Seeds. Ph.D. dissertation. Iowa State University, Ames, IA. 119 p.Google Scholar
Ku, S. B., Gutierrez, M., and Edwards, G. E. 1974. Localisation of the C3 and C4 pathways of photosynthesis in the leaves of Pennisetum purpureum and other C4 species. Insignificance of phenol oxidase. Planta 119:267278.Google Scholar
Kuzin, I. N. 1973. The effect of green foxtail in spring wheat crops with mouldboardless cultivation on the availability of nitrogen, phosphorus and potassium. Agrokimiya 10:130131.Google Scholar
Lakshmi, S. and Ranjekar, P. K. 1984. Novel molecular features of millet genomes. Ind. J. Biochem. Biophys 21:299303.Google Scholar
Laudien, H. and Koch, W. 1972. Some Comments on the Ecology and Distribution of Echinochloa crus-galli (L.), Digitaria sanguinalis (Scop.) and Setaria spp. in the Federal Republic of Germany. Stuttgart, Germany: University of Hohenheim Notiziario sulle Malatie della Piante (1972) No. 86. Pp. 149162.Google Scholar
Lauer, E. 1953. Uber die Keimtemperatur von Acherrunkrautern und deren Einfluss auf die Zusammensetzung von Unkrautgesellschaften. Flora Allg. Bot. Ztg 140:551595.Google Scholar
LeBaron, H. M. and Gressel, J. 1982. Herbicide Resistance in Plants. New York: J. Wiley.Google Scholar
Lee, S. M. and Cavers, P. B. 1981. The effects of shade on growth, development and resource allocation patterns of three species of foxtail (Setaria). Can. J. Bot 59:17761786.Google Scholar
Li, C. H., Pao, W. K., and Li, H. W. 1942. Interspecific crosses in Setaria . J. Heredity 33:351355.Google Scholar
Li, H. W. 1934. Studies in millet breeding methods. Bull. Coll. Agr. Honan Univ 2:122. [In Chinese].Google Scholar
Li, H. W., Li, C. H., and Pao, W. K. 1945. Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv. and the green foxtail millet S. viridis L. J. Am. Soc. Agron 37:3254.Google Scholar
Li, H. W., Meng, C. J., and Liu, T. N. 1935. Problems in the breeding of millet (Setaria italica (L.) Beauv). J. Am. Soc. Agron 27:963970.Google Scholar
Li, Y. and Wu, S. Z. 1996. Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87:3338.Google Scholar
Lincoln, R., Boxshall, G., and Clark, P. 1998. A Dictionary of Ecology, Evolution and Systematics. 2nd ed. Cambridge, Great: Britain: Cambridge University Press.Google Scholar
Lorenzi, H. J. and Jeffery, L. S. 1987. Weeds of the United States and Their Control. New York: Van Nostrand Reinhold. Pp. 7880.Google Scholar
MacVicar, R. M. and Parnell, H. R. 1941. The inheritance of plant colour and the extent of natural crossing in foxtail millet. Sci. Agric 22:8084.Google Scholar
Manthey, D. R. and Nalewaja, J. D. 1982. Moisture stress effects on foxtail seed germination. Proc. N. Cent. Weed Control Conf 37:5253.Google Scholar
Manthey, D. R. and Nalawaja, J. D. 1987. Germination of two foxtail (Setaria) species. Weed Technol 1:302304.Google Scholar
Mapplebeck, L. R., Sousa Machado, V., and Grodzinski, B. 1982. Seed germination and seedling growth characteristics of atrazine-susceptible and resistant biotypes of Brassica campestris . Can. J. Plant Sci 62:733739.Google Scholar
Martin, J. N. 1943. Germination studies of the seeds of some common weeds. Proc. Iowa Acad. Sci 50:221228.Google Scholar
May, R. M. 1973. Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.Google Scholar
Mester, T. C. and Buhler, D. D. 1986. Effects of tillage on the depth of giant foxtail germination and population densities. Proc. N. Cent. Weed Control Conf 41:45.Google Scholar
Monsalud, M. R., Tongaran, A. L., Lopez, F. R., and Lagrimas, M. Q. 1966. Edible wild plants in Philippine forests. Philippine J. Sci 95:431561.Google Scholar
Moore, D. J. and Fletchall, O. H. 1963. Germination-Regulating Mechanisms of Giant Foxtail (Setaria faberii). Columbia, MO: Research Bulletin. Missouri Agricultural Experiment Station No. 829.Google Scholar
Morrison, I. N., Maurice, D., and Bubar, C. J. 1981. The relative competitive ability of green and yellow foxtail in wheat and their response to shade. Sydney, Australia: XIII International Botanical Congress. [Abstract].Google Scholar
Moyer, J. R. and Dryden, R. D. 1977. Effects of combined applications of triallate or trifluralin with solution nitrogen on wheat, wild oats and green foxtail. Can. J. Plant Sci 57:479484.Google Scholar
Moyer, J. R., Dryden, R. D., and Chow, P. N. P. 1979. Effect of barban and flamprop methyl with solution nitrogen on wheat, wild oats and green foxtail. Can. J. Plant Sci 59:351356.Google Scholar
Mulligan, G. A. and Findlay, J. N. 1970. Reproductive systems and colonization in Canadian weeds. Can. J. Bot 48:859860.Google Scholar
Nadeau, L. B. 1983. The Effect of Water Stress on the Root Growth of Green Foxtail and Yellow Foxtail. . The University of Manitoba, Winnipeg, MB, Canada. 137 p.Google Scholar
Nadeau, L. B. and Morrison, I. N. 1983. Root development of two Setaria species under different soil moisture regimes. Asp. Appl. Biol 4:125134.Google Scholar
Naeiri, Y. and Belliard, J. 1987. Le millet Setaria italica une plante a redecouvrir. J. Agric. Trop. Bot. Appl 34:6587.Google Scholar
Nai, H. 1963. Archaeology in New China. Antiquity 37:176185.Google Scholar
Nakamura, S. 1962. Germination of grasses. Proc. Intl. Seed Testing Assoc 27:710729.Google Scholar
Narayanaswami, S. 1956. Structure and development of the caryopsis in some Indian millets. VI. Setaria italica . Bot. Gaz 118:112122.Google Scholar
Neuweiler, E. 1946. Nachtrage urgeschichtlicher Pflanzen. Vierteljahrsschr. Naturf. Ges. Zurich 91:122236.Google Scholar
Nguyen Van, F. and Pernes, J. 1985. Genetic diversity of foxtail millet (Setaria italica). Pages 113128 in Jacquard, P. ed. Genetic Differentiation and Dispersal in Plants. NATO ASI Series, Volume G5. Berlin: Springer-Verlag.Google Scholar
Nieto-Hatem, J. 1963. Seed Dormancy in Setaria lutescens . Ph.D. dissertation. Iowa State University, Ames, IA. 81 p. [Diss. Abstr., Ser. B. 24: 1360–1361.Google Scholar
Norris, R. F. and Schoner, C. A. Jr. 1980. Yellow foxtail (Setaria lutescens) biotype studies: dormancy and germination. Weed Sci 28:159163.Google Scholar
Oliver, L. R. and Schreiber, M. M. 1971. Differential selectivity of herbicides on six Setaria taxa. Weed Sci 19:428431.Google Scholar
Orgel, L. E. and Crick, F. H. C. 1980. Selfish DNA: the ultimate parasite. Nature 284:604607.Google Scholar
Orwick, P. L. and Schreiber, M. M. 1975. Differential root growth of four Setaria taxa. Weed Sci 23:364368.Google Scholar
Orwick, P. L. and Schreiber, M. M. 1979. Analysis of nonstructural carbohydrates in redroot pigweed (Amaranthus retroflexus) and robust foxtail (Setaria viridis var. robusta) throughout the growing season. Weed Sci 27:374379.Google Scholar
Osada, T. 1989. Illustrated Grasses of Japan. Tokyo: Heibonsha Publishers. P. 30.Google Scholar
Pareja, M. R. and Staniforth, D. W. 1985. Seed-soil microsite characteristics in relation to weed seed germination. Weed Sci 33:190195.Google Scholar
Pareja, M. R., Staniforth, D. W., and Pareja, G. P. 1985. Distribution of weed seed among soil structural units. Weed Sci 33:182189.Google Scholar
Peters, R. A., Meade, J. A., and Santelmann, P. W. 1963. Life History Studies as Related to Weed Control in the Northeast. 2. Yellow Foxtail and Giant Foxtail. Kingston, RI: University of Rhode Island Agricultural Experiment Station, p. 18.Google Scholar
Peters, R. A. and Yokum, H. C. 1961. Progress report on a study of the germination and growth of yellow foxtail (Setaria glauca (L.) Beauv). Proc. Northeast. Weed Cont. Conf 15:350355.Google Scholar
Philippi, T. and Seger, J. 1989. Hedging one's bets, revisited. Trends Ecol. Evol 4:4144.CrossRefGoogle ScholarPubMed
Pigliucci, M. 2001. Phenotypic Plasticity. Baltimore, MD: John Hopkins University Press.Google Scholar
Pohl, R. W. 1951. The genus Setaria in Iowa. Iowa State J. Sci 25:501508.Google Scholar
Pohl, R. W. 1966. The grasses of Iowa. Iowa State J. Sci 40:341373.Google Scholar
Pohl, R. W. 1978. How to Know the Grasses. 3rd ed. Dubuque, IA: Wm. C. Brown. 200 p.Google Scholar
Poirier-Hamon, S. and Pernes, J. 1986. Instabilite chromosomique dans les tissus somatiques des descendants d'un hybride interspecifique Setaria verticillata (P. Beauv.), Setaria italica (P. Beauv). R. Acad. Sci. Paris 302:319324.Google Scholar
Povilaitis, B. 1956. Dormancy studies with seeds of various weed species. Proc. Int. Seed Testing Assoc 21:87111.Google Scholar
Prasada Rao, K. E., de Wet, J. M. J., Brink, D. E., and Mengesha, M. H. 1987. Intraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ. Bot 41:108116.Google Scholar
Rahman, A. and Ashford, R. 1972. Control of green foxtail in wheat with trifluralin. Weed Sci 20:2327.Google Scholar
Rangaswami Ayyangar, G. N., Narayanan, T. R., and Seshadri Sarma, P. 1933. Studies in Setaria italica (Beauv.), the Italian millet. Part 1. Anthesis and pollination. Ind. J. Agric. Sci 3:561571.Google Scholar
Reschly, J., Dekker, H., and Stoltenberg, D. E. 1996. Comparison of seed germinability between acetyl coenzyme A carboxylase inhibitor resistant and susceptible Setaria faberi . Agron. Abstr. 6. p. 101.Google Scholar
Rice, K. and Jain, S. K. 1985. Plant population genetics and evolution in disturbed environments. Pages 287303 in Pickett, S.T.A. and White, P. A. eds. The Ecology of Natural Disturbance and Patch Dynamics. New York: Academic Press.Google Scholar
Ricroch, A., Mousseau, M., Darmency, H., and Pernes, J. 1987. Comparison of triazine-resistant and -susceptible cultivated Setaria italica: growth and photosynthetic capacity. Plant Physiol. Biochem 25:2934.Google Scholar
Ridley, H. N. 1930. The Dispersal of Plants Throughout the World. Ashford, Kent, Great Britain: L. Reeve. 744 p.Google Scholar
Ritter, R. L., Kaufman, L. M., Monaco, T. J., Novitsky, W. P., and Moreland, D. E. 1989. Characterization of triazine-resistant giant foxtail (Setaria faberi) and its control in no-tillage corn (Zea mays). Weed Sci 37:591595.Google Scholar
Rominger, J. M. 1962. Taxonomy of Setaria (Gramineae) in North America. Ill. Biol. Monogr. 29.Google Scholar
Rost, T. L. 1971. Structural and Histochemical Investigations of Dormant and Non-Dormant Caryopsis of Setaria lutescens (Gramineae). Ph.D. dissertation. Iowa State Universty, Ames, IA.Google Scholar
Rost, T. L. 1972. Ultrastructure and physiology of protein bodies and lipids from hydrated dormant and non-dormant embryos of Setaria lutescens . Am. J. Bot 59:607616.Google Scholar
Rost, T. L. 1973. The Anatomy of the caryopsis coat in mature caryopses of the yellow foxtail grass (Setaria lutescens). Bot. Gaz 134/1:3239.Google Scholar
Rost, T. L. 1975. The morphology of germination in Setaria lutescens (Gramineae): the effects of covering structures and chemical inhibitors on dormant and non-dormant florets. Ann. Bot 39:2130.Google Scholar
Rost, T. L. and Lersten, N. R. 1970. Transfer aleurone cells in Setaria lutescens (Gramineae). Protoplasma 71:403408.Google Scholar
Rost, T. L. and Lersten, N. R. 1973. A synopsis and selected bibliography of grass caryopsis anatomy and fine structure. Iowa State J. Res 48:4787.Google Scholar
Rozhevitz, R. U. and Shishkin, B. K. 1934. Gramineae. in Komarov, et al. eds. Flora Unionas Rerumpublicarum Sovieticarum Socialisticarum. Volume 2. Leningrad.Google Scholar
Santleman, P. W. and Meade, J. A. 1961. Variation in morphological characteristics and dalapon susceptibility within the species Setaria lutescens and S. faberii . Weeds 9:406410.Google Scholar
Santleman, P. W., Meade, J. A., and Peters, R. A. 1963. Growth and development of yellow foxtail and giant foxtail. Weeds 11:139142.Google Scholar
Scheiner, S. M. 1993. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst 24:3568.Google Scholar
Schreiber, M. M. 1965a. Development of giant foxtail under several temperatures and photoperiods. Weeds 13:4043.Google Scholar
Schreiber, M. M. 1965b. Effect of date of planting and stage of cutting on seed production of giant foxtail. Weeds 13:6062.Google Scholar
Schreiber, M. M. 1977. Longevity for foxtail taxa in undisturbed sites. Weed Sci 25:6672.Google Scholar
Schreiber, M. M. and Oliver, L. R. 1971. Two new varieties of Setaria viridis . Weed Sci 19:424427.Google Scholar
Schreiber, M. M. and Orwick, P. L. 1978. Influence of nitrogen fertility on growth of foxtail (Setaria) taxa. Weed Sci 26:547550.Google Scholar
Sells, G. D. 1965. CO2-O2 Ratios in Relation to Weed Seed Germination. . Iowa State University, Ames, IA.Google Scholar
Siegel, S. M., Renwick, G., and Rosen, L. A. 1962. Formation of carbon monoxide during seed germination and seedling growth. Science 137:683684.Google Scholar
Siegel, S. M. and Siegel, B. Z. 1987. Biogenesis of carbon monoxide: production by fungi and seed plants in the dark. Phytochemistry 26:31173119.Google Scholar
Simpson, G. M. 1990. Seed Dormancy in Grasses. Cambridge, Great: Britain: Cambridge University Press. 297 p.Google Scholar
Sionit, N. and Patterson, D. T. 1985. Responses of C4 grasses to atmospheric CO2 enrichment. II. Effect of water stress. Crop Sci 25:533537.Google Scholar
Siva Raman, L., Gupta, V. S., and Ranjekar, P. K. 1986. DNA sequence organization in the genomes of three related millet plant species. Plant Mol. Biol 6:375388.Google Scholar
Slife, F. W. 1954. A new Setaria species in Illinois. Proc. N. Cent. Weed Control Conf 11:67.Google Scholar
Smith, C. E. Jr. 1968. The New World centers of origin of cultivated plants and the archaeological evidence. Econ. Bot 22:253266.Google Scholar
Smith, G. P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191:528535.Google Scholar
Stace, C. A. ed. 1975. Hybridization and the Flora of the British Isles. London: Academic Press. 626 p.Google Scholar
Staniforth, D. W. 1965. Competitive effects of three foxtail species on soybeans. Weeds 13:191193.CrossRefGoogle Scholar
Stanway, V. 1971. Laboratory germination of giant foxtail, Setaria faberii Herrm., at different stages of germination. Proc. Assoc. Official Seed Analysts 61:8590.Google Scholar
Stapf, O. and Hubbard, C. K. 1930. Setaria . Pages 768866 in Prain, ed. Flora of Tropical Africa. Volume 9. London.Google Scholar
Steel, M. G., Cavers, P. B., and Lee, S. M. 1983. The biology of Canadian weeds. 59. Setaria glauca (L.) Beauv. and S. verticillata (L.) Beauv. Can. J. Plant Sci 63:711725.Google Scholar
Stevens, O. A. 1960. Weed Development Notes. Fargo, ND: North Dakota Agricultural Experiment Station Research Rep. 1. 22 p.Google Scholar
Stoller, E. W. and Wax, L. M. 1974. Dormancy changes fate of some annual weed seeds in the soil. Weed Sci 22:154155.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to arlyoxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci 43:527535.Google Scholar
Takahashi, N. and Hoshino, T. 1934. Natural crossing in Setaria italica (Beauv). Proc. Crop Sci. Soc. Jpn 6:319.Google Scholar
Taylorson, R. B. 1982. Anesthetic effects on secondary dormancy and phytochrome response in Setaria faberi Hermm. Plant Physiol 70:882886.Google Scholar
Taylorson, R. B. 1986. Water stress induced germination of giant foxtail (Setaria faberi) seeds. Weed Sci 34:871875.Google Scholar
Taylorson, R. B. and Brown, M. M. 1977. Accelerated after-ripening for overconing seed dormancy in grass weeds. Weed Sci 25:473476.Google Scholar
Thomas, A. G., Banting, J. D., and Bowes, G. 1986. Longevity of green foxtail seeds in a Canadian prairie soil. Can. J. Plant Sci 66:189192.Google Scholar
Thornhill, R. 1997. The Effect of Temperature and Moisture on Germination of Giant Foxtail (Setaria faberi) Seeds, Caryopses and Embryos. . Iowa State University, Ames, IA.Google Scholar
Thornhill, R. and Dekker, J. 1993. Mutant weeds of Iowa: V. S-triazine resistant giant foxtail (Setaria faberii Hermm). J. Iowa Acad. Sci 100:1314.Google Scholar
Till-Bottraud, I., Reboud, X., Brabant, P., Lefranc, M., Rherissi, B., Vedel, F., and Darmency, H. 1992. Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor. Appl. Genet 83:940946.Google Scholar
Toole, E. H. and Brown, E. 1946. Final results of the Duvel buried seed experiment. J. Agric. Res 72:201210.Google Scholar
Tranel, D. M. and Dekker, J. H. 1996. Differential seed germinability in triazine resistant and susceptible giant foxtail (Setaria faberi). N. Cent. Weed Sci. Soc. Proc 51:165.Google Scholar
Tranel, D. and Dekker, J. 2002. Differential seed germinability in triazine-resistant and -susceptible giant foxtail (Setaria faberii). Asian J. Plant Sci 1:334336.Google Scholar
Vanden Born, W. H. 1971. Green foxtail: seed dormancy, germination and growth. Can. J. Plant Sci 51:5359.Google Scholar
Volenberg, D. S., Stoltenberg, D. E., and Boerboom, C. M. 2001. Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Sci 49:635641.Google Scholar
Waldron, L. R. 1904. Weed studies. Vitality and growth of buried weed seed. N. D. Agric. Exp. Stn. Bull 62:439446.Google Scholar
Wang, R. L. and Dekker, J. 1995. Weedy adaptation in Setaria spp.: III. Variation in herbicide resistance in Setaria spp. Pestic. Biochem. Physiol 51:99116.Google Scholar
Wang, R. L., Wendell, J., and Dekker, J. 1995a. Weedy adaptation in Setaria spp.: I. Isozyme analysis of the genetic diversity and population genetic structure in S. viridis . Am. J. Bot 82:308317.Google Scholar
Wang, R. L., Wendell, J., and Dekker, J. 1995b. Weedy adaptation in Setaria spp.: II. Genetic diversity and population genetic structure in S. glauca, S. geniculata and S. faberii . Am. J. Bot 82:10311039.Google Scholar
Wang, Z. M., Devos, K. M., Liu, C. J., Wang, R. Q., and Gale, M. D. 1998. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor. Appl. Genet 96:3136.Google Scholar
Warwick, S. I. 1990. Allozyme and life history variation in five northwardly colonizing North American weed species. Plant Syst. Evol 169:4154.Google Scholar
Weaver, S. and Hamill, A. 1985. Effects of soil pH on competitive ability and leaf nutrient content in corn (Zea mays L.) and three weed species. Weed Sci 33:447451.Google Scholar
Werth, E. 1937. Zur Geographie und Geschichte der Hirsen. Berlin. Angew. Bot 19:4288.Google Scholar
Wheeler, W. A. 1950. Forage and Pasture Crops. New York: D. Van Nostrand.Google Scholar
Wiederholt, R. J. and Stoltenberg, D. E. 1996. Absence of differential fitness between giant foxtail (Setaria faberi) accessions resistant and susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Sci 44:1824.Google Scholar
Willweber-Kishimoto, E. 1962. Interspecific relationships in the genus Setaria . Contrib. Biol. Lab. Kyoto Univ. 141.Google Scholar
Wilson, R. G. Jr. 1980. Dissemination of weed seeds by surface irrigation water in western Nebraska. Weed Sci 28:8792.Google Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci 40:429433.Google Scholar