Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T04:11:15.789Z Has data issue: false hasContentIssue false

Giant foxtail (Setaria faberi) outcrossing and inheritance of resistance to acetyl-coenzyme A carboxylase inhibitors

Published online by Cambridge University Press:  20 January 2017

David E. Stoltenberg
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706

Abstract

Gene flow via pollen and inheritance of acetyl-coenzyme A carboxylase (ACCase) inhibitor resistance in giant foxtail have not been previously characterized. Therefore, experiments were conducted to quantify outcrossing rates and flowering periods of giant foxtail accessions resistant or susceptible to ACCase inhibitors and to determine the inheritance pattern of gene(s) that confer resistance. In greenhouse experiments, outcrossing rates between resistant and susceptible parents ranged from 0.24 to 0.73%, as gauged by the response of F1 plants to fluazifop-P. Resistant plants and susceptible plants flowered at similar times, with peak flowering occurring 63 to 67 d after planting. During this period, flower initiation was nearly twice as great for resistant plants as for susceptible plants. In inheritance experiments F2 plants segregated in a 1:2:1 ratio of resistant–intermediate–susceptible phenotypes after exposure to fluazifop-P, indicating that resistance was associated with a single nuclear, incompletely dominant allele. The very low rates of outcrossing among giant foxtail plants in the greenhouse indicate that gene flow of resistance traits in the field is likely to occur primarily by seed immigration rather than by pollen movement. However, gene flow of herbicide resistance traits via pollen provides a mechanism in which multiple resistance may develop among giant foxtail populations that are resistant to other classes of herbicides.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alban, C., Baldet, P., and Douce, R. 1994. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem. J. 300:557565.CrossRefGoogle ScholarPubMed
Barr, A. R., Mansooji, A. M., Holtum, J.A.M., and Powles, S. B. 1992. The inheritance of herbicide resistance in Avena sterilis ssp. ludoviciana biotype. Pages 7072 In Proceedings of the 1st International Weed Control Congress, Volume 2; Melbourne, Australia. Victoria, Australia: Australian Weed Science Society.Google Scholar
Betts, K. J., Ehlke, N. J., Wyse, D. L., Gronwald, J. W., and Somers, D. A. 1992. Mechanism of inheritance of diclofop resistance in Italian ryegrass (Lolium multiflorum). Weed Sci. 40:184189.CrossRefGoogle Scholar
Bever, J. D. and Felber, F. 1992. The theoretical genetics of autopolyploidy. Pages 185217 In Futuyma, D. and Antonovics, J., eds. Oxford Surveys in Evolutionary Biology. New York: Oxford University Press.Google Scholar
Blackshaw, R. E., Derksen, D. A., and Muendel, H. H. 1990. Herbicide combinations for postemergent control in safflower (Carthamus tinctorius). Weed Technol. 4:97104.CrossRefGoogle Scholar
Bottraud, T., Reboud, X., Brabant, P., Lefranc, M., Rherissi, B., Vedel, F., and Darmency, H. 1992. Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor. Appl. Genet. 83:940946.CrossRefGoogle Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicide sethoxydim and haloxyfop. Biophys. Res. Commun. 148:10391044.CrossRefGoogle ScholarPubMed
Byrd, J. D. Jr. and York, A. C. 1987. Annual grass control in cotton (Gossypium hirsutum) with fluazifop, sethoxydim, and selected dinitroaniline herbicides. Weed Sci. 35:388394.CrossRefGoogle Scholar
Chaudhary, H. R., Jana, S., and Acharya, S. N. 1980. Outcrossing rates in barley (Hordeum vulgare) populations in Canadian prairies. Can. J. Genet. Cytol. 22:353360.CrossRefGoogle Scholar
Conley, S. P., Binning, L. K., Stoltenberg, D. E., and Boerboom, C. M. 2000. Soybean yield loss in common lambsquarters (Chenopodium album) and giant foxtail (Setaria faberi) communities. Weed Sci. Soc. Am. Abstr. 40:136.Google Scholar
Cooper, J. P. 1959. Selection and population structure in Lolium. III. Selection and date of ear emergence. Heredity 13:461479.Google Scholar
Cornish, M. A., Hayward, M. D., and Lawrence, M. J. 1979. Self incompatibility in ryegrass. I. Genetic control in diploid Lolium perenne L. Heredity 43:95106.CrossRefGoogle Scholar
Crow, J. F. 1983. Genetics Notes: An Introduction To Genetics. 8th ed. Minneapolis, MN: Burgess. pp. 179191.Google Scholar
Darmency, H. and Pernes, J. 1985. Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res. 25:175179.CrossRefGoogle Scholar
Derr, J. F., Monaco, T. J., and Sheets, T. J. 1985. Response of three annual grasses to fluazifop. Weed Sci. 33:693697.CrossRefGoogle Scholar
Egli, M. A., Gengenbach, B. G., Gronwald, J. W., Somers, D. A., and Wyse, D. L. 1993. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol. 101:499506.CrossRefGoogle ScholarPubMed
Fearon, C. H., Hayward, M. D., and Lawrence, M. J. 1983. Self incompatibility in ryegrass. V. Genetic control, linkage, and seed set in diploid Lolium multiflorum Lam. Heredity 50:3546.CrossRefGoogle Scholar
Fisher, R. A. 1970. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. pp. 78113.Google Scholar
Ghersa, C. M., Martinez-Ghersa, M. A., Brewer, T. G., and Roush, M. L. 1994. Use of gene flow to control diclofop-methyl resistance in Italian ryegrass (Lolium multiflorum). Weed Technol. 8:139147.CrossRefGoogle Scholar
Haldane, J.B.S. 1930. Theoretical genetics of autopolyploids. J. Genet. 22:359372.CrossRefGoogle Scholar
Heap, I. 2001. International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. Available at http://www.weedscience.com. Accessed: May 2001.Google Scholar
Heh, C. M., Mei, T. F., and Yang, S. S. 1937. Anthesis of millet, Setaria italica (L.) Beauv. J. Am. Soc. Agron. 29:845853.CrossRefGoogle Scholar
Herbert, D., Price, L. J., Alban, C., Dehaye, L., Job, D., Cole, D. J., Pallett, K. E., and Harwood, J. L. 1996. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem. J. 318:9971006.CrossRefGoogle ScholarPubMed
Hidayat, I. and Preston, C. 1997. Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic. Biochem. Physiol. 57:137146.CrossRefGoogle Scholar
Hovin, A. W. 1958. Reduction of self-pollination by high night temperature in naturally self-fertilized Poa annua L. Agron. J. 50:369371.CrossRefGoogle Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1994. Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci. 42:123127.CrossRefGoogle Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Jasieniuk, M. and Maxwell, B. D. 1993. Population genetics and the evolution of herbicide resistance in weeds. Phytoprotection 75 (Suppl.): 2535.CrossRefGoogle Scholar
Knake, E. L. 1977. Giant foxtail: the most serious annual grass weed in the midwest. Weeds Today 9:1920.Google Scholar
Konishi, T. and Sasaki, Y. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc. Nat. Acad. Sci. USA 91:35983601.CrossRefGoogle ScholarPubMed
Konishi, T., Shinohara, K., Yamada, K., and Sasaki, Y. 1996. Acetyl-CoA carboxylase in higher plants have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol. 37:117122.CrossRefGoogle ScholarPubMed
Kuk, Y., Wu, J., Derr, J. F., and Hatzios, K. K. 1999. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol. 64:112123.CrossRefGoogle Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic. Biochem. Physiol. 51:129136.CrossRefGoogle Scholar
LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops: an overview and prognosis. Pages 336352 In Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental to Research to Practical Strategies. Washington, DC: American Chemical Society Symposium Series 421.CrossRefGoogle Scholar
Li, H. W. 1934. Studies in millet breeding methods. Bull. Coll. Agric. Honan Univ. 2:122.Google Scholar
Li, H. W., Meng, C. J., and Liu, T. N. 1935. Problems in the breeding of millet [Setaria italica (L.) Beauv.]. J. Am. Soc. Agron. 27:963970.CrossRefGoogle Scholar
Li, C. H., Pao, W. K., and Li, H. W. 1942. Interspecific crosses in Setaria . Heredity 33:351355.CrossRefGoogle Scholar
Marles, M.A.S., Devine, M. D., and Hall, J. C. 1993. Herbicide resistance in Setaria viridis conferred by a less sensitive form of acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol. 46:714.CrossRefGoogle Scholar
Maxwell, B. D. 1992. Predicting gene flow from herbicide resistant weeds in annual agriculture systems. Bull. Ecol. Soc. Am. Abstr. 73:264.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. Pages 126 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis.Google Scholar
Menendez, J., De Prado, R., Jorrin, J., and Taberner, A. 1993. Penetration, translocation and metabolism of diclofop-methyl in chlortoluron-resistant and -susceptible biotypes of Alopecurus myosuroides . Proc. Brighton Crop Prot. Conf. Weeds 1:213220.Google Scholar
Moechnig, M. J., Stoltenberg, D. E., Boerboom, C. M., and Binning, L. K. 2000. Corn (Zea mays) yield loss associated with common lambsquarters (Chenopodium album) and giant foxtail (Setaria faberi). Weed Sci. Soc. Am. Abstr. 40:136137.Google Scholar
Murray, B. G., Morrison, I. N., and Brule-Babel, A. L. 1995. Inheritance of acetyl-CoA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci. 43:233238.CrossRefGoogle Scholar
Pohl, R. W. 1962. Notes on Seteria viridis and S. faberi . Brittonia 14:210213.CrossRefGoogle Scholar
Preston, C., Tardiff, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol. 54:123134.CrossRefGoogle Scholar
Santelmann, P. W., Meade, J. A., and Peters, R. A. 1963. Growth and development of yellow foxtail and giant foxtail. Weeds 11:139142.CrossRefGoogle Scholar
Schemske, D. W. and Lande, R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39:4152.Google ScholarPubMed
Schreiber, M. M. 1965. Effect of date of planting and stage of cutting on seed production of giant foxtail. Weeds 13:6062.CrossRefGoogle Scholar
Seefeldt, S. S., Hoffman, D. L., Gealy, D. R., and Fuerst, E. P. 1998. Inheritance of diclofop resistance in wild oat (Avena fatua L.) biotypes from the Willamette Valley of Oregon. Weed Sci. 46:170175.CrossRefGoogle Scholar
Shukla, A., Leach, G. E., and Devine, M. D. 1997. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setaria viridis . Plant Physiol. Biochem. 35:803807.Google Scholar
Snedecor, G. W. and Cochran, W. G. 1989. Statistical Methods. 8th ed. Ames, IA: Iowa State University Press. pp. 53253.Google Scholar
Stallings, G. P., Thill, D. C., and Mallory-Smith, C. A., and Shafii, B. 1995. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43:95102.CrossRefGoogle Scholar
Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci. 37:512516.CrossRefGoogle Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43:527535.CrossRefGoogle Scholar
Suneson, C. A. 1953. Frost induced natural crossing in barley, and a corollary on stem rust persistence. Agron. J. 45:388389.CrossRefGoogle Scholar
Takahashi, N. and Hoshino, T. 1934. Natural crossing in [Setaria italica (L.) Beauv.]. Proc. Crop Sci. Soc. Jpn. 6:319.CrossRefGoogle Scholar
Tal, A., Zarka, S., and Rubin, B. 1996. Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol. 56:134140.CrossRefGoogle Scholar
Tardif, F. J., Preston, C., Holtum, J. A., and Powles, S. B. 1996. Resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides endowed by a single major gene encoding a resistant target site in a biotype of Lolium rigidum . Aust. J. Plant Physiol. 23:1523.Google Scholar
Vidrine, P. R., Reynolds, D. B., and Blouin, D. C. 1995. Grass control in soybean (Glycine max) with graminicides applied alone and in mixture. Weed Technol. 9:6872.CrossRefGoogle Scholar
Volenberg, D. S. 2001. Altered Acetyl-Coenzyme A Carboxylase Confers Resistance to Clethodim, Fluazifop, and Sethoxydim in Wisconsin Giant Foxtail (Setaria faberi Herrm.) and Large Crabgrass [Digitaria sanguinalis (L.) Beauv.]. Ph.D. dissertation. University of Wisconsin—Madison, Madison, WI. 205 p.CrossRefGoogle Scholar
Volenberg, D. S., Stoltenberg, D. E., and Boerboom, C. M. 2000. Outcrossing and inheritance of herbicide-resistance traits in giant foxtail. Proc. N. Cent. Weed Sci. Soc. 55:83.Google Scholar
Volenberg, D. S., Stoltenberg, D. E., and Boerboom, C. M. 2001. Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Sci. 49:635641.CrossRefGoogle Scholar
Wang, R, Wendel, J. F., and Dekker, J. H. 1995. Weedy adaptation in Setaria spp. II. Genetic diversity and population structure in S. glauca, S. geniculata, and S. faberii (Poaceae). Am. J. Bot. 82:10311039.CrossRefGoogle Scholar
Warwick, S. I. 1990. Genetic variation in weeds—with particular reference to Canadian agricultural weeds. Pages 318 In Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. London: Academic Press.CrossRefGoogle Scholar
Warwick, S. I., Thompson, B. K., and Black, L. D. 1987. Life history and allozyme variation in populations of the weed species Setaria faberi . Can. J. Bot. 65:13961402.CrossRefGoogle Scholar
Wiederholt, R. J. and Stoltenberg, D. E. 1995. Cross-resistance of a large crabgrass (Digitaria sanguinalis) accession to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Technol. 9:518524.CrossRefGoogle Scholar
Wiederholt, R. J. and Stoltenberg, D. E. 1996. Absence of differential fitness between giant foxtail (Setaria faberi) accessions resistant and susceptible to acetyl-coenzyme A carboxylase inhibitors. Weed Sci. 44:1824.CrossRefGoogle Scholar