Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:55:19.923Z Has data issue: false hasContentIssue false

Giant Ragweed (Ambrosia trifida) Competition in Cotton

Published online by Cambridge University Press:  20 January 2017

Kelly A. Barnett
Affiliation:
University of Tennessee, Department of Plant Sciences, 605 Airways Blvd., Jackson, TN 38301
Lawrence E. Steckel*
Affiliation:
University of Tennessee, Department of Plant Sciences, 605 Airways Blvd., Jackson, TN 38301
*
Corresponding author's E-mail: lsteckel@utk.edu

Abstract

Glyphosate-resistant (GR) weeds, including giant ragweed, are among the most challenging weeds for growers to control in cotton. A field study was conducted in 2011 and 2012 to determine the competitiveness of giant ragweed with densities of 0, 0.1, 0.2, 0.4, 0.8, or 1.6 plants m−1 of row. Early in the growing season, giant ragweed competition with densities of at least 0.8 plants m−1 row reduced cotton height compared with the weed-free control. Based on node above white flower (NAWF) and node above cracked boll (NACB) data, a delay in cotton maturity was observed for treatments with giant ragweed present at a density of 1.6 m−1 of cotton row for NAWF and 0.8 m−1 or 1.6 m−1 of row for NACB. Lint yield losses of 50% were estimated for cotton with rows growing along side of giant ragweed at a density of 0.26 plants m−1 row. Cotton in rows located 140 cm away from giant ragweed required an estimated 1.85 plants m−1 row to reduce yield by 50%. These data suggest that giant ragweed sphere of influence was at least 1 m wide. Cotton fiber quality was not affected by giant ragweed at any density. Giant ragweed is a highly competitive weed in cotton, even at low densities, and efforts should be implemented to control giant ragweed early in the season to prevent cotton yield loss.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abul-Fatih, H. A. and Bazzaz, F. A. 1979a. The biology of Ambrosia trifida L. I. Influence of species removal on the organization of the plant community. New Phytol. 83:813816.CrossRefGoogle Scholar
Abul-Fatih, H. A. and Bazzaz, F. A. 1979b. The biology of Ambrosia trifida L. II. Germination, emergence, growth, and survival. New Phytol. 83:817827.Google Scholar
Askew, S. D., Bailey, W. A., Scott, G. H., and Wilcut, J. W. 2002. Economic assessment of weed management for transgenic and nontransgenic cotton in tilled and nontilled systems. Weed Sci. 50:512520.Google Scholar
Bassett, I. J. and Crompton, C. W. 1982. The biology of Canadian weeds. Ambrosia trifida L. Can. J. Plant Sci. 62:10031010.Google Scholar
Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses, and prospects. Pest Manag. Sci. 56:299308.Google Scholar
Baysinger, J. A. and Sims, B. D. 1991. Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Sci. 39:358362.CrossRefGoogle Scholar
Bazzaz, F. A. and Carlson, R. W. 1979. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82:223232.Google Scholar
Bourland, F. M., Benson, N. R., Vories, E. D., Tugwell, N. P., and Danforth, D. M. 2001. Measuring maturity of cotton using nodes above white flower. J. Cotton Sci. 5:18.Google Scholar
Bryson, C. T. and DeFelice, M. S., eds. 2009. Giant ragweed. Page 53 in Weeds of the South. Athens, GA University of Georgia Press.Google Scholar
Buchanan, G. A. and Burns, E. R. 1971. Weed competition in cotton. I. Sicklepod and tall morningglory. Weed Sci. 19:576579.Google Scholar
Castner, E. P., Murray, D. S., Hackett, N. M., Verhalen, L. M., Weeks, D. L., and Stone, J. F. 1989. Interference of hogpotato (Hoffmanseggia glauca) with cotton (Gossypium hirsutum). Weed Sci. 37:688694.CrossRefGoogle Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Duke, S. O. and Powles, S. B. 2009. Glyphosate-resistant crops and weeds: now and in the future. AgBioForum. 12:346347.Google Scholar
Gianessi, L. P. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 61:214245.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Green, J. D., Murray, D. S., and Verhalen, L. M. 1987. Full-season interference of silverleaf nightshade (Solanum elaeagnifolium) with cotton (Gossypium hirsutum). Weed Sci. 35:813818.CrossRefGoogle Scholar
Hake, S. J., Hake, K. D., and Kerby, T. A. 1996. Preharvest/harvest decisions. Pages 7381 in Hake, S. J., ed. Cotton Production Manual. Div. Agric. Natural Resources Publ. 3352. Oakland, CA University of California, Oakland.Google Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.Google Scholar
Hartnett, D. C., Hartnett, B. B., and Bazzaz, F. A. 1987. Persistence of Ambrosia trifida populations in old fields and responses to successional changes. Amer. J. Bot. 74:12391248.Google Scholar
Heap, I. M. 2012. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed August 8, 2012.Google Scholar
Johnson, B., Loux, M., Nordby, D., Sprague, C., Nice, G., Westhoven, A., and Stachler, J. 2006. Biology and management of giant ragweed. Purdue Extension Publication GWC-12. www.extension.purdue.edu/extmedia/BP/GWC-12.pdf. Accessed August 8, 2012, 16 p.Google Scholar
Jurik, T. W. 1991. Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia. 87:539550.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybean (Glycine max). Weed Sci. 42:523527.Google Scholar
Loux, M. M. and Berry, M. A. 1991. Use of a grower survey for estimating weed problems. Weed Technol. 5:460466.CrossRefGoogle Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Mercer, K. L., Murray, D. S., and Verhalen, L. M. 1987. Interference of unicorn-plant (Proboscidea louisianica) with cotton (Gossypium hirsutum). Weed Sci. 35:807812.Google Scholar
Morgan, G. M., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
Norsworthy, J. K., Jha, P., Steckel, L. E., and Scott, R. C. 2010. Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol. 24:6470.Google Scholar
Norsworthy, J. K., Riar, D., Jha, P., and Scott, R. C. 2011. Confirmation, control, and physiology of glyphosate-resistant giant ragweed in Arkansas. Weed Technol. 25:430435.Google Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Rogers, J. B., Murray, D. S., Verhalen, L. M., and Claypool, P. L. 1996. Ivyleaf morningglory (Ipomoea hederacea) interference with cotton (Gossypium hirsutum). Weed Technol. 10:107114.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985a. Weed interference with cotton (Gossypium hirsutum). I. Buffalobur (Solanum rostratum). Weed Sci. 33:810814.Google Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985b. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Sci. 33:815818.CrossRefGoogle Scholar
Schutte, B. J., Regnier, E. E., and Harrison, S. K. 2008. The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. Seed Sci. Res. 18:201211.Google Scholar
Schutte, B. J., Regnier, E. E., and Harrison, S. K. 2012. Seed dormancy and adaptive seedling emergence timing in giant ragweed (Ambrosia trifida). Weed Sci. 60:1926.Google Scholar
Snipes, C. E., Buchanan, R. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.CrossRefGoogle Scholar
SPSS. 2002. Sigma Plot 8.0 Programing Guide. Chicago, IL SPSS. 320 p.Google Scholar
Steckel, L. E. 2007. Giant ragweed. University of Tennessee FACT sheet. W119. https://utextension.tennessee.edu/publications/Documents/W119.pdf. Accessed August 8, 2012.Google Scholar
Steckel, L. E. and Gwathmey, C. O. 2009. Glyphosate-resistant horseweed (Conyza canadensis) growth, seed production, and interference in cotton. Weed Sci. 57:346350.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21:574580.Google Scholar
Webster, T. M. 2005. Weed Survey–southern states: broadleaf crops. Proc. South Weed Sci. Soc. 58:291304.Google Scholar
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.Google Scholar