Published online by Cambridge University Press: 12 June 2017
The relationships between the actual amount of spring-applied trifluralin detected in soil at seeding, initial injury to flax, and crop growth and yield were investigated in southern Manitoba over three growing seasons. As the amount of trifluralin in the soil increased, flax density and dry matter production decreased, such that at a soil concentration equivalent to 1 kg ai ha−1 trifluralin, the two were reduced by 40 and 49%, respectively. Recovery from early-season injury was characterized by enhanced crop growth rates (CGRs) and net assimilation rates (NARs) of surviving plants during the remainder of the growing season. Maximum recovery occurred in plots where trifluralin levels in the soil were between 0.8 and 1 kg ha−1 at seeding. During the interval between stem elongation and bud initiation, CGRs and NARs of flax in the trifluralin-treated plots exceeded those of flax in the untreated plots by up to 1.5 and 1.2 times, respectively. Additionally, the number of branches per plant increased linearly as trifluralin amounts in the soil increased. Flax seed yield was decreased by trifluralin as described by the equation: flax seed (% of untreated control) = 104.9 - 13.3[trifluralin detected (kg ha−1) at seeding]. Based on this equation, trifluralin levels in the soil of up to 0.7 kg ai ha−1 caused less than a 5% reduction in flax yield under weed-free conditions.