Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:42:51.805Z Has data issue: false hasContentIssue false

The Herbicide Saflufenacil (Kixor™) is a New Inhibitor of Protoporphyrinogen IX Oxidase Activity

Published online by Cambridge University Press:  20 January 2017

Klaus Grossmann*
Affiliation:
BASF Agricultural Center Limburgerhof, D-67117 Limburgerhof, Germany
Ricarda Niggeweg
Affiliation:
BASF Agricultural Center Limburgerhof, D-67117 Limburgerhof, Germany
Nicole Christiansen
Affiliation:
Metanomics GmbH, Tegeler Weg 33, D-10589 Berlin, Germany
Ralf Looser
Affiliation:
Metanomics GmbH, Tegeler Weg 33, D-10589 Berlin, Germany
Thomas Ehrhardt
Affiliation:
BASF Agricultural Center Limburgerhof, D-67117 Limburgerhof, Germany
*
Corresponding author's E-mail: Klaus.grossmann@basf.com

Abstract

Saflufenacil (Kixor™) is a new herbicide of the pyrimidinedione chemical class for preplant burndown and selective preemergence dicot weed control in multiple crops, including corn. In this study, the mode of action of saflufenacil was investigated. For initial characterization, a series of biotests was used in a physionomics approach for comprehensive physiological profiling of saflufenacil effects. With the use of treated duckweed plants, metabolite profiling was performed based on quantification of metabolite changes, relative to untreated controls. Physiological and metabolite profiling suggested a mode of action similar to inhibitors of protoporphyrinogen IX oxidase (PPO) in tetrapyrrole biosynthetic pathway. Saflufenacil inhibited PPO enzyme activity in vitro with 50% inhibition of 0.4 nM for the enzymes isolated from black nightshade, velvetleaf, and corn. PPO inhibition by saflufenacil caused accumulations of protoporphyrin IX (Proto) and hydrogen peroxide (H2O2) in leaf tissue of black nightshade and velvetleaf. In corn, only slight increases in Proto and H2O2 were found, which reflects in planta tolerance of this crop. The results show that saflufenacil is a new PPO-inhibiting, peroxidizing herbicide.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beale, S. I. and Weinstein, J. D. 1990. Tetrapyrrole metabolism in photosynthetic organisms. Pages 287391. in Dailey, H. A. Biosynthesis of Heme and Chlorophyll. New York McGraw-Hill.Google Scholar
Chang, C. J. and Kao, C. H. 1998. H2O2 metabolism during senescence of rice leaves: changes in enzyme activities in light and darkness. Plant Growth Reg. 25:1115.CrossRefGoogle Scholar
Dayan, F. E. and Duke, S. O. 1997. Overview of protoporphyrinogen oxidase-inhibiting herbicides. Proc. Brighton Crop Protection Conf.—Weeds. 8392.Google Scholar
Fernie, A. R., Trethewey, R. N., Krotzky, A. J., and Willmitzer, L. 2004. Metabolite profiling: from diagnostics to system biology. Nat. Rev. Mol. Cell Biol. 5:17.Google Scholar
Gergov, M., Ojanperä, I., and Vuori, E. 2003. Simultaneous screening for 238 drugs in blood by liquid chromatography–ionspray tandem mass spectrometry with multiple-reaction monitoring. J. Chromatogr. B. 795:4153.Google Scholar
Grossmann, K. 2005. What it takes to get a herbicide's mode of action. Physionomics, a classical approach in a new complexion. Pest Manag. Sci. 61:423431.Google Scholar
Grossmann, K. and Schiffer, H. 1999. Protoporphyrinogen oxidase-inhibiting activity of the new, wheat-selective isoindoledione herbicide, cinidon-ethyl. Pest. Sci. 55:687695.Google Scholar
Grossmann, K., Tresch, S., and Plath, P. 2001. Triaziflam and diaminotroazine derivatives affect enantioselectively multiple herbicide target sites. Z. Naturforsch. Sect. C J. Biosci. 56:559569.Google Scholar
Hirai, K., Uchida, A., and Ohno, R. 2002. Major synthetic routes for modern herbicide classes and agrochemical characteristics. Pages 179289. in Böger, P., Wakabayashi, K., and Hirai, K. Herbicide Classes in Development. Berlin-Heidelberg Springer.Google Scholar
Holmes, E. and Antti, H. 2002. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst. 127:15491557.Google Scholar
Liebl, R., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. BAS 800H: a new herbicide for preplant burndown and preemergence dicot weed control. Weed Science Society of America Conf., Abstract 120.Google Scholar
Matringe, M., Camadro, J. M., and Brouillet, N. 1993. Protoporphyrinogen oxidase, the molecular target site for peroxidizing herbicides. Proc. Brighton Crop Protection Conf.—Weeds. 703711.Google Scholar
Matsumoto, H. 2002. Inhibitors of protoporphyrinogen oxidase: a brief update. Pages 151161. in Böger, P., Wakabayashi, K., and Hirai, K. Herbicide Classes in Development. Berlin-Heidelberg Springer.Google Scholar
Mead, R., Curnow, R. N., and Hasted, A. M. 1993. Statistical Methods in Agriculture and Experimental Biology. 2nd ed. London Chapman and Hall.CrossRefGoogle Scholar
Meazza, G., Bettarini, F., La Porta, P., Piccardi, P., Signorini, E., Portoso, D., and Fornara, L. 2004. Synthesis and herbicidal activity of novel heterocyclic protoporphyrinogen oxidase inhibitors. Pest Manag. Sci. 60:11781188.Google Scholar
Nagano, E. 1999. Herbicidal efficacy of protoporphyrinogen oxidase inhibitors. Pages 293302. in Böger, P. and Wakabayashi, K. Peroxidizing Herbicides. Berlin-Heidelberg Springer.Google Scholar
Niessen, W. M. 2003. Progress in liquid chromatography–mass spectrometry instrumentation and its impact on high-throughput screening. J. Chromatogr. A. 1000:413436.Google Scholar
Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., and Willmitzer, L. 2000. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J. 23:131142.CrossRefGoogle ScholarPubMed
Sauter, H., Lauer, M., and Fritsch, H. J. 1991. Metabolic profiling of plants—a new diagnostic technique. Pages 288299. in Baker, D. R., Fenyes, J. G., and Moberg, W. K. Synthesis and Chemistry of Agrochemicals II. ACS Symposium Series 443. Washington, DC American Chemical Society.CrossRefGoogle Scholar
Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. U. S. A. 99:65676572.CrossRefGoogle ScholarPubMed
Van Ravenzwaay, B., Cunha, G. C., Leibold, E., Looser, R., Mellert, W., Prokoudine, A., Walk, T., and Wiemer, J. 2007. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol. Lett. 172:2128.CrossRefGoogle ScholarPubMed
Wakabayashi, K. and Böger, P. 1999. General physiological characteristics and mode of action of peroxidizing herbicides. Pages 164190. in Böger, P. and Wakabayashi, K. Peroxidizing Herbicides. Berlin-Heidelberg Springer.Google Scholar
Walk, T., Looser, R., Bethan, B., Herold, M. M., Kamlage, B., Schmitz, O., van Ravenzwaay, B., Mellert, W., Coelho, P. C. G., Ehrhardt, T., Wiemer, J., Prokoudine, A., and Krennrich, G. 2007. Means and methods for analyzing a sample by means of chromatography–mass spectrometry. Intl. Patent WO 2007/012643.Google Scholar