Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:34:44.220Z Has data issue: false hasContentIssue false

Isolation and Characterization of Metabolites from Pseudomonas fluorescens-D7 for Control of Downy Brome (Bromus tectorum)

Published online by Cambridge University Press:  12 June 2017

S. Gurusiddaiah
Affiliation:
Bioanalytical Ctr., Washington State Univ., 514 Science Hall, Pullman, WA 99164-4235
David R. Gealy
Affiliation:
Bioanalytical Ctr., Washington State Univ., 514 Science Hall, Pullman, WA 99164-4235
Ann C. Kennedy
Affiliation:
Bioanalytical Ctr., Washington State Univ., 514 Science Hall, Pullman, WA 99164-4235
Alex G. Ogg Jr.
Affiliation:
Bioanalytical Ctr., Washington State Univ., 514 Science Hall, Pullman, WA 99164-4235

Abstract

Downy brome is a grassy weed that infests millions of acres of winter wheat in the Western United States and costs farmers millions of dollars in lost yields. It can not be controlled consistently using chemicals or cultural practices. Isolates of naturally occurring rhizobacteria have shown potential as biological control agents for downy brome. Centrifuged supernatant from aerobic shake cultures of Pseudomonas fluorescens strain D7 suppressed germination of seeds and reduced root and shoot growth of downy brome in agar diffusion assays. The present article relates to the isolation and characterization of active compounds from strain D7. The active compounds were denatured and lost activity with commonly used techniques of extraction, concentration, and purification of microbial products. Two unusual techniques for isolation and partial purification of the active compounds from supernatant of strain D7 were developed. With one technique, supernatant was concentrated at 30 to 35 C under vacuum to 10% of the initial volume. Subsequently, the concentrate was chromatographed on sephadex gels to separate the active fraction. With the second technique, cell-free supernatant was frozen, with or without prior concentration, at −12 C for 12 to 24 h. The frozen supernatant was then thawed at 2 to 4 C, resulting in precipitation and crystallization of the active fraction. The active fraction isolated with either method inhibited downy brome. Inhibition was complete at concentrations as low as 1 mg total dry matter L-1 agar. Also, the active fraction inhibited the plant pathogenic fungus Gaeumannomyces graminis var. tritici. Chemical analysis of the active fraction complex revealed the presence of chromopeptides and other peptides, fatty acid esters, and a lipopolysaccharide matrix. Separation of any of the components from the complex resulted in nearly complete loss of activity against downy brome.

Type
Special Topics
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth reduction. Soil Biol. Biochem. 19:452458.CrossRefGoogle Scholar
2. Baragona, J. S. and White, J. C. 1992. Colonization of the bacterial biocontrol agent Xanthomonas campestris in annual bluegrass (Poa annua L.). Abstr. Weed Sci. Soc. Am. 32:50.Google Scholar
3. Becker, J. O., Hedges, R. W., and Messens, E. 1986. Diverse effects of some bacterial siderophores on the uptake of iron by plants. Pages 6170 in Swinburne, T. R., ed. Iron, Siderophores and Plant Diseases. Plenum, New York.CrossRefGoogle Scholar
4. Bolton, H. Jr. and Elliott, L. F. 1989. Toxin production by a rhizobacterial Pseudomonas sp. that inhibits wheat root growth. Plant Soil. 114:269278.CrossRefGoogle Scholar
5. Capper, A. L. and Campbell, R. 1986. The effect of artificially inoculated antagonistic bacteria on the prevalence of take-all disease of wheat in field experiments. J. Appl. Bacteriol. 60:155160.CrossRefGoogle Scholar
6. Cherrington, C. A. and Elliott, L. F. 1987. Incidence of inhibitory pseudomonads in the Pacific Northwest. Plant Soil 101:159165.CrossRefGoogle Scholar
7. Cody, Y. S. and Gross, D. C. 1987. Characterization of pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae . Appl. Environ. Microbiol. 53:928934.CrossRefGoogle ScholarPubMed
8. Elliott, L. F. and Kennedy, A. C. 1991. Method for screening bacteria and application thereof for field control of the weed downy brome. United States Patent no. 5,030,562.Google Scholar
9. Elliott, L. F. and Lynch, J. M. 1984. Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem. 16:6972.CrossRefGoogle Scholar
10. Fett, W. F., Osman, S. F., and Dunn, M. F. 1989. Characterization of exopolysaccharides produced by plant-associated fluorescent pseudomonads. Appl. Environ. Microbiol. 55:573578.CrossRefGoogle ScholarPubMed
11. Fredrickson, J. K. and Elliott, L. F. 1985. Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83:399409.CrossRefGoogle Scholar
12. Gealy, D. R., Gurusiddaiah, S., Kennedy, A. C., and Ogg, A. G. Jr. 1992. Effects of phytotoxins from Pseudomonas fluorescens strain D7 on seed germination and seedling growth of downy brome (Bromus tectorum L.). Abstr. Weed Sci. Soc. Am. 32:51.Google Scholar
13. Guerrant, G. O. and Moss, C. W. 1984. Determination of monosaccharides as aldonitrile, O-methyloxime, alditol, and cyclitol acetate derivatives by gas chromatography. Anal. Chem. 56:633638.CrossRefGoogle Scholar
14. Gurusiddaiah, S., Gealy, D. R., Kennedy, A. C., and Ogg, A. G. Jr. 1992. Production isolation, and characterization of phytotoxic and fungistatic compounds for biocontrol of downy brome (Bromus tectorum L.) and plant pathogenic fungi. Abstr. Weed Sci. Soc. Am. 32:84.Google Scholar
15. Gurusiddaiah, S. and Ronald, R. C. 1981. Grahamimycins: New antibiotics from Cytospora sp. (W.F.P.L.) 13A. Antimicrob. Agents Chemother. 19:153165.CrossRefGoogle ScholarPubMed
16. Gurusiddaiah, S., Weller, D. M., Sarkar, A., and Cook, R. J. 1986. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob. Agents Chemother. 29:488495.CrossRefGoogle ScholarPubMed
17. Harris, P. A. and Stahlman, P. W. 1992. Biological weed control in wheat using deleterious rhizobacteria. Abstr. Weed Sci. Soc. Am. 32:50.Google Scholar
18. Hui, J. M. and Hurlbert, R. E. 1979. Modifiable chromatophore proteins in photosynthetic bacteria. J. Bacteriol. 138:207217.CrossRefGoogle ScholarPubMed
19. Johnson, B. N., Kennedy, A. C., and Ogg, A. G. Jr. 1993. Suppression of downy brome growth by a rhizobacterium in controlled environments. Soil Sci. Soc. Am. J. 57:7377.CrossRefGoogle Scholar
20. Kalmowitz, K. E., Monaco, T. J., Evans, S. L., Zorner, P. J., and Baragona, J. S. 1992. Temperature model can predict control of annual bluegrass by biological agent, Xanthomonas campestris strain. Abstr. Weed Sci. Soc. Am. 32:50.Google Scholar
21. Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55:722727.CrossRefGoogle Scholar
22. King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44:301307.Google Scholar
23. Lane, B. C. and Hurlbert, R. E. 1980. Characterization of the cell wall and cell wall proteins of Chromatium vinosum . J. Bacteriol. 141:13861398.CrossRefGoogle Scholar
24. Leisinger, T. and Margraff, R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43:422442.CrossRefGoogle ScholarPubMed
25. Loper, J. E. and Schroth, M. N. 1986. Importance of siderophores in microbial interactions in the rhizosphere. Pages 8598 in Swinburne, T. R., ed. Iron, Siderophores and Plant Diseases. Plenum, New York.CrossRefGoogle Scholar
26. Marshall, P. A., Loeb, G. I., Cowan, M. M., and Fletcher, M. 1989. Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy. Appl. Environ. Microbiol. 55:28272831.CrossRefGoogle ScholarPubMed
27. Meyer, J. M. and Abdallah, M. A. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107:319328.CrossRefGoogle Scholar
28. Mack, R. N. 1981. Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-ecosystems 7:145165.CrossRefGoogle Scholar
29. Morrow, L. A. and Stahlman, P. W. 1984. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32(Suppl. 1):26.CrossRefGoogle Scholar
30. Ogg, A. G. Jr., Kennedy, A. C., Young, F. L., Gealy, D. R., Johnson, B. N., Gurusiddaiah, S., and Skipper, H. D. 1991. A research team approach to biological control of annual grasses in winter wheat. Proc. West. Soc. Weed Sci. 44:113114.Google Scholar
31. Peeper, T. F. 1984. Integrated systems for control and management of downy brome (Bromus tectorum) in wheat and alfalfa in North America. Weed Sci. 32(Suppl. 1):1825.CrossRefGoogle Scholar
32. Philson, S. B. and Llinas, M. 1982. Siderochromes from Pseudomonas fluorescens, I. Isolation and characterization. J. Biol. Chem. 257:80818085.CrossRefGoogle ScholarPubMed
33. Singh, S. K. and Gurusiddaiah, S. 1985. Treponemycin, a nitrile antibiotic active against Treponema hyodysenteriae . Antimicrob. Agents Chemother. 27:239245.CrossRefGoogle ScholarPubMed
34. Skipper, H. D., Kennedy, A. C., and Ogg, A. G. Jr. 1991. Survival of a soil bacterium for weed control. Proc. West. Soc. Weed Sci. 44:40.Google Scholar
35. Spakman, D. H., Stein, W. H., and Moore, S. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:11901206.CrossRefGoogle Scholar
36. Suslow, T. V. and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111115.CrossRefGoogle Scholar
37. Tranel, P. J., Gealy, D. R., and Irzyk, G. P. 1993. Physiological responses of downy brome (Bromus tectorum) roots to Pseudomonas fluorescens strain D7 phytotoxin. Weed Sci. 41:483489.CrossRefGoogle Scholar
38. Tranel, P. J., Gealy, D. R., and Kennedy, A. C. 1993. Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol. 7:134139.CrossRefGoogle Scholar
39. van der Hofstad, G.A.J.M., Marugg, J. D., Verjans, G.M.G.M., and Weisbeek, P. J. 1986. Characterization and structural analysis of the siderophore produced by the PGPR Pseudomonas putida strain WCS358. Pages 7175 in Swinburne, T. R., ed. Iron, Siderophores and Plant Diseases. Plenum, New York.CrossRefGoogle Scholar
40. Walters, J. S. and Hedges, J. I. 1988. Simultaneous determination of uronic acids and aldoses in plankton, plant tissues, and sediment by capillary gas chromatography of N-hexylaldonamide and alditol acetates. Anal. Chem. 60:988994.CrossRefGoogle Scholar
41. Weller, D. M. and Cook, R. J. 1986. Suppression of root diseases of wheat by fluorescent pseudomonads and mechanisms of action. Pages 99107 in Swinburne, T. R., ed. Iron, Siderophores and Plant Diseases. Plenum, New York.CrossRefGoogle Scholar
42. Wicks, G. A. 1984. Integrated systems for control and management of downy brome (Bromus tectorum) in cropland. Weed Sci. 32(Suppl. 1):2631.CrossRefGoogle Scholar
43. Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118:197203.CrossRefGoogle ScholarPubMed
44. Zdorovenko, G. M., Veremyeychenko, S. N., Zakharova, I. Ya., and Knirel, Yu. A. 1990. Endotoxins of Pseudomonas fluorescens . Adv. Exp. Med. Biol. 256:131135.CrossRefGoogle ScholarPubMed