Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T17:19:47.894Z Has data issue: false hasContentIssue false

Late-Season Seed Production in Arable Weed Communities: Management Implications

Published online by Cambridge University Press:  20 January 2017

Muthukumar V. Bagavathiannan*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: muthu@uark.edu

Abstract

Late-season weed escapes are often ignored because they rarely cause crop yield penalty. Traditional weed management recommendations are based on the economic threshold (ET) approach, wherein management is required if the predicted current-season yield loss is greater than the cost of control interventions. While ET-based weed management can reduce current-season production costs and promote farmland biodiversity, it does not consider the long-term biological and economic consequences associated with late-season weed seed production. An important concern is that late-season weed seed production will replenish the soil seedbank, ensuring future weed problems. In the context of herbicide resistance evolution, allowing late-season weed seed production can be problematic because the probabilities of occurrence of resistant mutants rise with increases in seed production. A key component of herbicide resistance mitigation and management is preventing seed production and buildup of the soil seedbank. Late-season weed management efforts constitute additional expenses to growers, which cannot be recouped in that growing season, but any such investment must be weighed against the perceived long-term benefits. It appears that management of late-season weed escapes is valuable in a number of situations, and the degree to which management interventions should be employed can be case-specific. Adoption of economic optimum thresholds (EOTs), which can be established using bio-economic models, will be useful for making management decisions for late-season weed escapes. In systems vulnerable to herbicide resistance evolution, bio-economic resistance thresholds (BERTs) will be appropriate and bio-economic resistance models (BERMs) will be helpful for establishing such thresholds for specific production scenarios. Management considerations for late-season weed escapes are discussed, and knowledge gaps for future research are identified.

Type
Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altieri, M. A. 1999. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 74:1931.Google Scholar
Altieri, M. A. and Merrick, L. C. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Econ. Bot. 41:8696.Google Scholar
Andersson, L. 1995. Effects of dose and application timing on seed production of three weed species treated with MCPA or tribenuron-methyl. Weed Res. 35:6774.CrossRefGoogle Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Burgos, N. 2011a. Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci. 59:359365.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Neve, P. 2011b. Modeling the evolution of barnyardgrass (Echinochloa crus-galli L.) resistance to glyphosate in cotton. In: Proceedings of the Beltwide Cotton Meeting, Atlanta, GA. National Cotton Council of America, Cordova, TN.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Neve, P. 2011c. Seed production of barnyardgrass (Echinochloa crus-galli) in response to time of emergence in cotton and rice. J. Agric. Sci. In press. DOI: 10.1017/S0021859611000876.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., and Smith, K. L. 2011d. Growth and reproduction of barnyardgrass (Echinochloa crus-galli) under different soybean densities and distances from soybean rows. Page 131 in Proceedings of Southern Weed Science Society Meeting. San Juan, PR Southern Weed Science Society.Google Scholar
Bastiaans, L., Zhao, D. L., Den Hollander, N. G., Baumann, D. T., Kruidhof, H. M., and Kropff, M. J. 2007. Exploiting diversity to manage weeds in agro-ecosystems. Pages 267284 in Spiertz, J.H.J., Struik, P. C., and van Laar, H. H., eds. Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations. London Springer Publishers.Google Scholar
Bauer, T. A. and Mortensen, D. A. 1992. A comparison of economic and economic optimum thresholds for two annual weeds in soybeans. Weed Technol. 6:228235.CrossRefGoogle Scholar
Baumann, D. T., Bastiaans, L., and Kropff, M. J. 2001. Effects of intercropping on growth and reproductive capacity of late-emerging Senecio vulgaris . Ann. Bot. 87:209217.CrossRefGoogle ScholarPubMed
Baumann, D. T., Potter, C.A.P., and Muller-Scharer, H. 1993. Period thresholds in integrated weed control in field vegetables. Pages 807813 in Proceedings of the 8th EWRS-Symposium. Braunschweig, Germany European Weed Research Society.Google Scholar
Bennett, A. C. and Shaw, D. R. 2000. Effect of preharvest desiccants on weed seed production and viability. Weed Technol. 14:530538.Google Scholar
Biniak, B. M. and Aldrich, R. J. 1986. Reducing velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi) seed production with simulated-roller herbicide applications. Weed Sci. 34:256259.CrossRefGoogle Scholar
Blackshaw, R. E. 2008. Agronomic merits of cereal cover crops in dry bean production systems in western Canada. Crop Prot. 27:208214.Google Scholar
Blackshaw, R. E., Lemerle, D., Mailer, R., and Young, K. R. 2002. Influence of wild radish on yield and quality of canola. Weed Sci. 50:344349.Google Scholar
Blumenthal, D. and Jordan, N. 2001. Weeds in field margins: a spatially explicit simulation analysis of Canada thistle population dynamics. Weed Sci. 49:509519.Google Scholar
Boatman, N. D., Jones, N. E., Conyers, S. T., and Pietravalle, S. 2011. Development of plant communities on set-aside in England. Agric. Ecosyst. Environ. 143:819.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41:383405.Google Scholar
Bosnic, A. C. and Swanton, C. J. 1997a. Economic decision rules for postemergence herbicide control of barnyardgrass (Echinochloa crus-galli) in corn (Zea mays). Weed Sci. 45:557563.CrossRefGoogle Scholar
Bosnic, A. C. and Swanton, C. J. 1997b. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.Google Scholar
Brewer, C. E. and Oliver, L. R. 2007. Reducing weed seed rain with late-season glyphosate applications. Weed Technol. 21:753758.Google Scholar
Bruff, S. A., Griffin, J. L., and Richard, E. P. Jr. 1996. Johnsongrass (Sorghum halepense) control as influenced by timing of Asulam and fertilizer/cultivation applications. Weed Technol. 10:134139.Google Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997. Implications of weed seedbank dynamics to weed management. Weed Sci. 45:329336.CrossRefGoogle Scholar
Butler, S. J., Vickery, J. A., and Norris, K. 2007. Farmland biodiversity and the footprint of agriculture. Science. 315:381384.Google Scholar
Cardina, J. and Norquay, H. M. 1997. Seed production and seedbank dynamics in subthreshold velvetleaf (Abutilon theophrasti) populations. Weed Sci. 45:8590.Google Scholar
Carlson, D. R. and Burnside, O. C. 1981. Use of recirculating sprayer to control tall weed escapes in crops. Weed Sci. 29:174179.Google Scholar
Carvalheiro, L. G., Veldtman, R., Shenkute, A. G., Tesfay, G. B., Pirk, C.W.W., Donaldson, J. S., and Nicolson, S. W. 2011. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14:251259.Google Scholar
Cavers, P. B. 1983. Seed demography. Can. J. Bot. 61:36783690.CrossRefGoogle Scholar
Cavers, P. B. and Benoit, D. L. 1989. Seedbanks in arable land. Pages 309328 in Leck, M. A., Parker, V. T., and Simpson, R. L., eds. Ecology of Soil Seed Banks. San Diego, CA Academic Publishers.Google Scholar
Clay, P. A. and Griffin, J. L. 2000. Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci. 48:481486.CrossRefGoogle Scholar
Coble, H. D. and Mortensen, D. A. 1992. The threshold concept and its application to weed science. Weed Technol. 6:191195.Google Scholar
Cordeau, S., Petit, S., Reboud, X., and Chauvel, B. 2011. Sown grass strips harbor high weed diversity but decrease weed richness in adjacent crops. Weed Res. 52:8897.Google Scholar
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Quart. 2:1320.Google Scholar
Cousens, R., Doyle, C. J., Wilson, B. J., and Cussans, G. W. 1986. Modelling the economics of controlling Avena fatua in winter wheat. Pestic. Sci. 17:l12.Google Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, UK Cambridge University Press. 348 p.CrossRefGoogle Scholar
Culpepper, S. A. and Sosnoskie, L. M. 2011. Palmer amaranth Management for 2011 Begins Now. Georgia Cotton Newsletter, The University of Georgia Cooperative Extension. http://commodities.caes.uga.edu/fieldcrops/cotton/cnl070910.pdf. Accessed: November 18, 2011.Google Scholar
Czapar, G. F., Curry, M. P., and Wax, L. M. 1997. Grower acceptance of economic thresholds for weed management in Illinois. Weed Technol. 11:828831.Google Scholar
Dale, J. E. 1978. The rope wick applicator: a new method of applying round-up. Page 31 in Proceedings of the Southern Weed Science Society Meeting. Las Cruces, NM Southern Weed Science Society.Google Scholar
Davis, A. S. 2006. When does it make sense to target the weed seed bank? Weed Sci. 54:558565.Google Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22:331338.Google Scholar
Dekker, J. 1999. Soil weed seedbanks and weed management. Pages 139166 in Buhler, D. D., ed. Expanding the Context of Weed Management. Boca Raton, FL CRC Press.Google Scholar
DeVore, J. D., Norsworthy, J. K., Johnson, D. B., Starkey, C. E., Wilson, M. J., and Griffith, G. M. 2011. Palmer amaranth emergence as influenced by soybean production system and deep tillage. Page 241 in Proceedings of the Southern Weed Science Society Meeting. San Juan, PR Southern Weed Science Society.Google Scholar
DeVore, J. D., Norsworthy, J. K., Still, J. A., Griffith, G. M., and Johnson, D. B. 2009. Effect of Deep Tillage and Rye on Palmer amaranth Seed Burial and Emergence in Cotton. http://arkansasagnews.uark.edu/582-23.pdf. Accessed: November 20, 2011.Google Scholar
Ellis, J. M., Shaw, D. R., and Barrentine, W. L. 1998. Herbicide combinations for preharvest weed desiccation in early maturing soybean (Glycine max). Weed Technol. 12:157165.Google Scholar
Fawcett, R. S. and Slife, F. W. 1978. Effects of 2,4-D and dalapon on weed seed production and dormancy. Weed Sci. 26:543547.Google Scholar
Fettell, N. 1998. Lessons from the Condobolin long term tillage trial. Page 23 in Central West Farming Systems Research Compendium. Condobolin, NSW Central West Farming Systems.Google Scholar
Flaten, B. 2009. After Harvest, It's Time to Control Weeds. http://www.agriculture.gov.sk.ca/AGV_0909_4. Accessed: November 27, 2011.Google Scholar
Franke, A. C., Lotz, L.A.P., van der Burg, W. J., and van Overbeek, L. 2009. The role of arable weed seeds for agroecosystems functioning. Weed Res. 49:131141.Google Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
Gibbons, D. W., Bohan, D. A., Rothery, P., Stuart, R. C., Haughton, A. J., Scott, R. J., Wilson, J. D., Perry, J. N., Clark, S. J., Dawson, R.J.G., and Firbank, L. G. 2006. Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proc. R. Soc. Lond. Ser B -Biol. Sci. 273:19211928.Google ScholarPubMed
Griffin, J. L., Boudreaux, J. M., and Miller, D. K. 2010. Herbicides as harvest aids. Weed Sci. 58:355358.CrossRefGoogle Scholar
Grime, J. P. 1979. Plant strategies and vegetation processes. New York John Wiley & Sons. 222 p.Google Scholar
Grundy. 2003. Predicting weed emergence: a review of approaches and future challenges. Weed Res. 43:111.Google Scholar
Hager, A. 2011. Preharvest Intervals for Postemergence Soybean Herbicides. http://bulletin.ipm.illinois.edu/article.php?id=1532. Accessed: December 8, 2011.Google Scholar
Hager, A., Sprague, C., and McGlamery, M. 1999. Late-Season Herbicide Applications in Soybean. http://bulletin.ipm.illinois.edu/pastpest/articles/199920e.html. Accessed: November 21, 2011.Google Scholar
Hartzler, B. 2001. Variable Herbicide Performance. http://www.weeds.iastate.edu/mgmt/2001/variableperformance.htm. Accessed: October 03, 2011.Google Scholar
Hartzler, R. G. 1996. Velvetleaf (Abutilon theophrasti) population dynamics following a single year's seed rain. Weed Technol. 10:581586.Google Scholar
Hawes, C., Haughton, A. J., Osborne, J. L., Roy, D. B., Clark, S. J., Perry, J. N., Rothery, P., Bohan, D. A., Brooks, D. R., Champion, G. T., Dewar, A. M., Heard, M. S., Woiwod, I. P., Daniels, R. E., Young, M. W., Parish, A. M., Scott, R. J., Firbank, L. G., and Squire, G. R. 2003. Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Phil. Trans. R. Soc. Lond. Ser B-Biol. Sci. 358:18991913.Google Scholar
Hennen, S., Scursoni, J., and Forcella, F. 2002. Delayed weed emergence and escape from control in glyphosate-tolerant soybean. Page 57 in Proceedings of the North Central Weed Science Society Meeting. St. Louis, MO North Central Weed Science Society.Google Scholar
Holland, J. M., Hutchison, M.A.S., Smith, B., and Aebischer, N. J. 2006. A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann. Appl. Biol. 148:4971.Google Scholar
Huang, J. Z., Shrestha, A., Tollenaar, M., Deen, W., Rahimian, H., and Swanton, C. J. 2001. Effect of temperature and photoperiod on the phenological development of common lambsquarters. Weed Sci. 49:500508.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Jha, P. and Norsworthy, J. K. 2009. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651.Google Scholar
Johnson, W. G., Gibson, K. D., Davis, V. M., and Weller, S. C. 2004a. Late-Season Weed Escapes in Indiana Soybean. http://www.btny.purdue.edu/weedscience/PostSlide/weedescapes05.pdf. Accessed: November 11, 2011.Google Scholar
Johnson, W. G., Hartzler, R. G., and Nordby, D. E. 2004b. Weeds to Watch: Weeds That Seem To Be Expanding Their Habitat Range. http://www.ncwss.org/proceed/2004/proc04/abstracts/133.pdf. Accessed: November 12, 2011.Google Scholar
Jones, R. E. and Medd, R. W. 2005. A methodology for evaluating risk and efficacy of weed management technologies. Weed Sci. 53:505514.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Keeley, P. E., Carter, C. H., Thullen, R. J., and Miller, J. H. 1984. Comparison of ropewick applicators for control of Johnsongrass (Sorghum halepense) in cotton (Gossypium hirsutum) with glyphosate. Weed Technol. 32:431435.Google Scholar
King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.Google Scholar
Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 3:4252.Google Scholar
Leeson, J., Thomas, A., Hall, L., Brenzil, C., Brown, K., and Van Acker, R. 2005. Prairie Weed Survey: Cereal, Oilseed and Pulse Crops 1970s to the 2000s. Weed Survey Series. Agriculture and Agri-Food Canada. Saskatoon, Saskatchewan, Canada Saskatoon Research Centre Publication. 395.Google Scholar
Li, R., Wang, S., Duan, L., Li, Z., Christoffers, M. J., and Mengistu, L. W. 2007. Genetic diversity of wild oat (Avena fatua) populations from China and the United States. Weed Sci. 55:95101.Google Scholar
Lindquist, J. L., Maxwell, B. D., Buhler, D. D., and Gunsolus, J. L. 1995. Modeling the population dynamics and economics of velvetleaf (Abutilon theophrasti) control in a corn (Zea mays)-soybean (Glycine max) rotation. Weed Sci. 43:269275.CrossRefGoogle Scholar
Lybecker, D. W., Schweizer, E. E., and King, R. P. 1991. Weed management decisions in corn based on bioeconomic modeling. Weed Sci. 39:124129.Google Scholar
Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean cultivars, row spacing, and seed density with annual weeds. Weed Sci. 41:6268.Google Scholar
Manalil, S., Busi, R., Renton, M., and Powles, S. B. 2011. Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci. 59:210217.Google Scholar
Marshall, E.J.P., Brown, V. K., Boatman, N. D., Lutman, P.J.W., Squire, G. R., and Ward, L. K. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res. 43:7789.Google Scholar
Mayen, C. D., Gibson, K. D., and Weller, S. C. 2008. A comparison of threshold strategies in tomatoes and soybean. Weed Technol. 22:729735.Google Scholar
Mayfield, A. and Presser, R. 1998. Crop-topping in pulses with paraquat and glyphosate for control of annual ryegrass. Pages 2021 in Agribusiness Crop Updates. Perth, Western Australia Department of Agriculture.Google Scholar
Meek, B., Loxton, D., Sparks, T., Pywell, R., and Pickett, H. 2002. The effect of arable field margin composition on invertebrate biodiversity. Biol. Conserv. 106:259271.Google Scholar
Meiss, H., Munier-Jolain, N., Henriot, F., and Caneill, J. 2008. Effects of biomass, age and functional traits on regrowth of arable weeds after cutting. J. Plant Dis. Protect. 21:493499.Google Scholar
Menges, R. M. 1987. Weed seed population dynamics during six years of weed management systems in crop rotations on irrigated soil. Weed Sci. 35:328332.Google Scholar
Monjardino, M., Pannell, D. J., and Powles, S. B. 2003. Multispecies resistance and integrated management: a bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Weed Sci. 51:798809.Google Scholar
Moomaw, R. S. and Martin, A. R. 1990. Ropewick application of picloram for leafy spurge (Euphorbia esula) control. Weed Technol. 4:235238.Google Scholar
Neve, P., Mortimer, A. M., and Putwain, P. D. 1996. Management options for the establishment of communities of rare arable weeds on set-aside land. Asp. Appl. Biol. 44:257262.Google Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol. 25:335343.Google Scholar
Neve, P. and Powles, S. B. 2005. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor. Appl. Genet. 110:11541166.Google Scholar
Norris, R. F. 1999. Ecological implications of using thresholds for weed management. Pages 3158 in Buhler, D. D., ed. Expanding the Context of Weed Management. New York The Haworth Press.Google Scholar
Norsworthy, J. K. 2004. Tolerance of a glyphosate-resistant soybean to late-season glyphosate applications. Weed Technol. 18:454457.Google Scholar
Norsworthy, J. K. 2012. Sublethal rates of glyphosate lead to decreased sensitivity in Palmer amaranth. Crop Manag. In press.Google Scholar
Norsworthy, J. K., Bagavathiannan, M. V., Neve, P., Smith, K. L., and Zelaya, I. 2011. Integrating nonchemical practices into simulation modeling for herbicide resistance: a proactive strategy. in Proceedings of the Weed Science Society of America Meeting. Portland, OR Weed Science Society of America. http://wssaabstracts.com/public/4/proceedings.html. Accessed: March 30, 2012.Google Scholar
Norsworthy, J. K. and Oliver, L. R. 2002. Pitted morningglory interference in drill-seeded glyphosate-resistant soybean. Weed Sci. 50:2633.Google Scholar
Norsworthy, J., Ward, S., Shaw, D., Llewellyn, R., Nichols, R., Webster, T., Bradley, K., Frisvold, G., Powles, S., Burgos, N., Witt, B., and Barrett, M. 2012. Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations. Washington, DC U.S. Department of Agriculture, In press.Google Scholar
[NRCS] Natural Resources Conservation Service. 2011. Herbicide Resistant Weed Management Requirement Sheet. http://www.tn.nrcs.usda.gov/programs/eqip2011/Docs2/Herbicide_Resistant_Weed_Management_UPDATE_and_Scouting_form_2-10-11.pdf. Accessed: November 5, 2011.Google Scholar
Otto, S., Masin, R., Chiste, G., and Zanin, G. 2007. Modelling the correlation between plant phenology and weed emergence for improved weed control. Weed Res. 47:488498.Google Scholar
Page, E. R., Gallagher, R. S., Kemanian, A. R., Zhang, H., and Fuerst, E. P. 2006. Modeling site-specific wild oat (Avena fatua) emergence across a variable landscape. Weed Sci. 54:838846.CrossRefGoogle Scholar
Panetta, F. D. 2009. Weed eradication: an economic perspective. Inv. Spec. Manage. 2:360368.Google Scholar
[POST] Parliamentary Office of Science and Technology. 2005. Farmland Wildlife. http://www.parliament.uk/documents/post/postpn254.pdf. Accessed: December 7, 2011.Google Scholar
[RPA] Rural Payments Agency. 2011. Single Payment Scheme. http://rpa.defra.gov.uk/rpa/index.nsf/vDocView/FFFDD11D4803F7D580256F72003DD33D?OpenDocument. Accessed: December 7, 2011.Google Scholar
Sattin, M., Zanin, G., and Berti, A. 1992. Case history for weed competition/population ecology: velvetleaf (Abutilon theophrasti) in corn (Zea mays). Weed Technol. 6:213219.Google Scholar
Schweizer, E. E. and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32:7683.Google Scholar
Scursoni, J. A., Forcella, F., and Gunsolus, J. 2007. Weed escapes and delayed weed emergence in glyphosate-resistant soybean. Crop Prot. 26:212218.Google Scholar
Shirtliffe, S. J. and Entz, M. H. 2005. Chaff collection reduces seed dispersal of wild oat by a combine harvester. Weed Sci. 53:96101.Google Scholar
Shuma, J. M., Quick, W. A., Raju, M.V.S., and Hsiao, A. I. 1995. Germination of seeds from plants of Avena fatua L. treated with glyphosate. Weed Res. 35:249255.Google Scholar
Simberloff, D. 2003. Eradication: preventing invasions at the outset. Weed Sci. 51:247253.Google Scholar
Simpson, R. L., Leck, M. A., and Parker, V. T. 1989. Seed banks: general concepts and methodological issues. Pages 38 in Leck, M. A., Parker, V. T., and Simpson, R. L., eds. Ecology of Seed Banks. San Diego, CA Harcourt Brace Jovanovich.Google Scholar
Steadman, K. J., Eaton, D. M., Plummer, J. A., Ferris, D. G., and Powles, S. B. 2006. Late-season non-selective herbicide application reduces Lolium rigidum seed numbers, seed viability and seedling fitness. Aus. J. Agric. Res. 57:133141.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Late-season common waterhemp (Amaranthus rudis) interference in narrow-and wide-row soybean. Weed Technol. 18:947952.Google Scholar
Storkey, J. and Cussans, J. W. 2007. Reconciling the conservation of in-field biodiversity with crop production using a simulation model of weed growth and competition. Agric. Ecosyst. Environ. 122:173182.Google Scholar
Storkey, J. and Westbury, D. B. 2007. Managing arable weeds for biodiversity. Pest Manag. Sci. 63:517523.Google Scholar
Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: the role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 44:437445.Google Scholar
Swinton, S. M. and King, R. P. 1994. A bioeconomic model for weed management in corn and soybean. Agric. Syst. 44:313335.Google Scholar
Taylor, K. L. and Hartzler, R. G. 2000. Effect of seedbank augmentation on herbicide efficacy. Weed Technol. 14:261267.Google Scholar
Taylor, R. L., Maxwell, B. D., and Boik, R. J. 2006. Indirect effects of herbicides on bird food resources and beneficial arthropods. Agric. Ecosyst. Environ. 116:157164.Google Scholar
Taylor, S. E. and Oliver, L. R. 1997. Sicklepod (Senna obtusifolia) seed production and viability as influenced by late-season postemergence herbicide applications. Weed Sci. 45:497501.Google Scholar
Van Acker, R. and Bartlinski, A. 2005. Weed Escapes from 2005 and Implications for 2006 Crop Year. http://umanitoba.ca/afs/agronomists_conf/proceedings/2005/van_acker_weed_escapes.pdf. Accessed: November 4, 2011.Google Scholar
Van Acker, R. C. 2009. Weed biology serves practical weed management. Weed Res. 49:15.Google Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol. 15:714724.Google Scholar
Vincent, C., Panneton, B., and Fleurat-Lessard, F. 2001. Physical Control Methods in Plant Protection. Paris Springer Jointly with INRA. 329.Google Scholar
Walker, E. R. and Oliver, L. R. 2008. Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol. 22:318325.Google Scholar
Walsh, K. 2010. Integrating Weed Management and the Harrington Seed Destructor. Grains Research and Development Corporation Report. http://www.grdc.com.au/director/events/researchupdates?item_id=BB6A7C71D60BCF74D84E3EC13BF3D0C4&pageNumber=24. Accessed: November 26, 2011.Google Scholar
Walsh, M. 2001. Managing herbicide resistant wild radish. Pages 2324 in Agribusiness Crop Updates. Geraldton, Australia Western Australian Department of Agriculture.Google Scholar
Walsh, M. and Parker, W. 2002. Wild radish and ryegrass seed collection at harvest: chaff carts and other devices. Pages 3738 in Agribusiness Crop Updates. Perth, Australia Western Australian Department of Agriculture.Google Scholar
Walsh, M. and Powles, S. 2004. Herbicide resistance: an imperative for smarter crop weed management. in Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. http://www.cropscience.org.au/icsc2004/symposia/2/5/1401_powles.htm. Accessed: November 28, 2011.Google Scholar
Walsh, M. J. 1996. Effectiveness of seed collection systems collecting ryegrass seed. in Asghar, M., ed. Proceedings of the 8th Australian Agronomy Conference. Toowoomba, Australia University of Southern Queensland.Google Scholar
Walsh, M. J. and Newman, P. 2007. Burning narrow windrows for weed seed destruction. Field Crops Res. 104:2440.Google Scholar
Walsh, M. J. and Powles, S. B. 2007. Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol. 21:332338.Google Scholar
Warwick, S. I. and Black, L. D. 1988. The biology of Canadian weeds. 90. Abutilon theophrasti . Can. J. Plant Sci. 68:10691085.Google Scholar
Whigham, D. K. and Stoller, E. W. 1979. Soybean desiccation by paraquat, glyphosate, and ametryn to accelerate harvest. Agron. J. 71:630633.Google Scholar
Willard, T. S. and Griffin, J. L. 1993. Soybean (Glycine max) yield and quality responses associated with wild poinsettia (Euphorbia heterophylla) control programs. Weed Technol. 7:118122.Google Scholar
Wittenberg, R. and Cock, M.J.W., eds. 2001. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices. Wallingford, UK CAB International. 240.Google Scholar
Young, F. L. 1986. Russian thistle (Salsola iberica) growth and development in wheat (Triticum aestivum). Weed Sci. 34:901905.Google Scholar
Young, F. L. and Whitesides, R. E. 1987. Efficacy of postharvest herbicides on Russian thistle (Salsola iberica) control and seed germination. Weed Sci. 35:554559.Google Scholar
Young, F. L., Yenish, J. P., Launchbaugh, G. K., McGrew, L. L., and Alldredge, J. R. 2008. Postharvest control of Russian thistle (Salsola tragus) with a reduced herbicide applicator in the Pacific Northwest. Weed Technol. 22:156159.Google Scholar
Zimdahl, R. L. 2004. Weed-Crop Competition: A Review, 2nd ed. Ames, IA Wiley-Blackwell Publishers. 220 p.Google Scholar