No CrossRef data available.
Published online by Cambridge University Press: 12 June 2017
Degradation of trifluralin in four soils, each represented at four sites, under field conditions was determined quantitatively and described mathematically. A biexponential equation that resulted from integration of first-order and second-order differential rate equations described degradation data better than the first-order kinetic model for 15 of 25 soil-site combinations. Biexponential model regression coefficients indicated extent of degradation and that degradation is rapid at initially high trifluralin concentrations but slows as concentration decreases. The first-order kinetic model initially underestimated but ultimately overestimated degradation of trifluralin, thereby inferring that a first-order half-life is inadequate for predicting trifluralin persistence.