Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T11:14:59.441Z Has data issue: false hasContentIssue false

Mechanism for the Suppression of pea (Pisum sativum) Root Rot by Dinitroaniline Herbicides

Published online by Cambridge University Press:  12 June 2017

D. J. Hagedorn
Affiliation:
Dep. Plant Pathol., Univ. of Wisconsin, Madison, WI 53706

Abstract

Pea (Pisum sativum L. ‘Elf’) root rot suppression by dinitroaniline herbicides could not be explained by a direct effect on the host. Pre-incubation of pea roots with 0.1 ppmw of oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) or trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) in solution culture did not alter their resistance to root rot. Furthermore, 0.1 ppmw of oryzalin or trifluralin did not alter the exudation of electrolytes or α-amino compounds from pea roots. Most of the dinitroaniline herbicides significantly inhibited mycelial radial growth of pathogen, Aphanomyces euteiches Drechs., at 1.0 ppmw and inhibited asexual spore production at 0.1 to 1.0 ppmw. Dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline], and oryzalin inhibited A. euteiches mycelial growth and asexual reproduction more effectively than the other dinitroaniline herbicides studied. The production of motile zoospores, the infecting propagule of the pathogen, was the most sensitive stage in the life cycle and was completely inhibited by 0.01 ppmw of all dinitroaniline herbicides tested. Since this concentration is below that estimated in the soil solution at registered rates of application, inhibition of motile zoospore production is sufficient to explain root rot suppression. Inhibition of pathogen motility resulted in a 2-week delay in the infection of pea roots. This delay allowed sufficient additional plant growth that the peas could better withstand the effects of subsequent disease development.

Type
Research Article
Copyright
Copyright © 1979 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Altman, J. and Campbell, C. L. 1977. Effects of herbicides on plant diseases. Annu. Rev. Phytopathol. 15:361385.CrossRefGoogle Scholar
2. Ashton, F. M. and Crafts, A. S. 1973. Mode of action of herbicides. Wiley-Interscience, New York. 504 pp.Google Scholar
3. Blankendaal, M., Hodgson, R. H., Davis, D. G., Hoerauf, R. A., and Shimabukuro, R. H. 1972. Growing plants without soil for experimental use. Misc. Pub. No. 1251. Agric. Res. Serv., U.S. Dep. Agric. 17 pp.CrossRefGoogle Scholar
4. Burke, D. W., Mitchell, J. E., and Hagedorn, D. J. 1969. Selective conditions for infection of pea seedlings by Aphanomyces euteiches in soil. Phytopathology 59:16701674.Google Scholar
5. Cunningham, J. L. and Hagedorn, D. J. 1962. Penetration and infection of pea roots by zoospores of Aphanomyces euteiches . Phytopathology 52:827834.Google Scholar
6. Eshel, Y. and Katan, J. 1972. Effect of dinitroanilines on solanaceous vegetables and soil fungi. Weed Sci. 20:243246.CrossRefGoogle Scholar
7. El-Khadem, M., Hagib, M. M., and Tewfik, M. S. 1973. The effect of certain nitro-herbicides on the growth of some soil-inhabiting fungi. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. 2:128:780—786.Google Scholar
8. Grau, C. R. 1977. Effect of dinitramine and trifluralin on growth, reproduction, and infectivity of Aphanomyces euteiches . Phytopathology 67:551556.Google Scholar
9. Grau, C. R. and Reiling, T. P. 1977. Effect of trifluralin and dinitramine on Aphanomyces root rot of peas. Phytopathology 67:273276.CrossRefGoogle Scholar
10. Grinstein, A., Katan, J., and Eshel, Y. 1976. Effect of dinitroaniline herbicides on plant resistance to soilborne pathogens. Phytopathology 66:517522.CrossRefGoogle Scholar
11. Hapler, P. K. and Palevitz, B. A. 1974. Microtubules and microfilaments. Annu. Rev. Plant Physiol. 25:309362.Google Scholar
12. Hess, F. D. 1978. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas . Abstr. Weed Sci. Soc. Am. No. 173.Google Scholar
13. Hess, F. D. and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24:351360.Google Scholar
14. Iloba, C. 1977. The effect of trifluralin on the formation of ecototrophic mycorrhizae in some pine species. I. Toxicity to mycorrhiza forming fungi. Eur. J. For. Pathol. 7:4751.CrossRefGoogle Scholar
15. Jacques, G. L. and Harvey, R. G. 1979. Dinitroaniline herbicide phytotoxicity as influenced by soil moisture and herbicide vaporization. Weed Sci. In press.Google Scholar
16. Lee, M. and Lockwood, J. L. 1977. Enhanced severity of Thielaviopsis basicola root rot induced in soybean by the herbicide chloramben Phytopathology 67:13601367.CrossRefGoogle Scholar
17. Llanos, M. C., and Lockwood, J. L. 1960. Factors affecting zoospore production by Aphanomyces euteiches . Phytopathology 50:826830.Google Scholar
18. Mitchell, J. E. and Yang, C. Y. 1966. Factors affecting growth and development of Aphanomyces euteiches . Phytopathology 56:917922.Google ScholarPubMed
19. Moore, S. 1968. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243:62816283.CrossRefGoogle ScholarPubMed
20. Neubauer, R. and Avizohar-Hershenson, Z. 1973. Effect of the herbicide, trifluralin, on Rhizoctonia disease in cotton. Phytopathology 63:651652.Google Scholar
21. Papavizas, G. C. and Ayers, W. A. 1974. Aphanomyces species and their root diseases in pea and sugar beet. U.S. Dep. Agric. Tech. Bull. 1485. 158 pp.Google Scholar
22. Parka, S. J. and Soper, O. F. 1977. The physiology and mode of action of the dinitroaniline herbicides. Weed Sci. 25:7987.Google Scholar
23. Rodriguez-Kabana, R., Curl, E. A., and Funderburk, H. H. Jr. 1969. Effect of trifluralin on growth of Sclerotium rolfsii in liquid culture and soil. Phytopathology 59:228232.Google Scholar
24. Sherwood, R. T. and Hagedorn, D. J. 1958. Determining the common root rot potential of pea fields. Wisconsin Agric. Exp. Stn. Bull. 531. 12 pp.Google Scholar
25. Teasdale, J. R., Harvey, R. G., and Hagedorn, D. J. 1978. Suppression of pea root rot by dinitroaniline herbicides. Weed Sci. In press.Google Scholar
26. Wyse, D. L., Meggitt, W. F., Penner, abd D. 1976. Herbicide-root rot interaction in navy bean. Weed Sci. 24:1621.CrossRefGoogle Scholar