Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T07:54:08.487Z Has data issue: false hasContentIssue false

Metolachlor and Alachlor Effects on Membrane Permeability and Lipid Synthesis

Published online by Cambridge University Press:  12 June 2017

Jill M. Mellis
Affiliation:
Alabama Agric. Exp. Stn., Dep. Bot.
Parthan Pillai
Affiliation:
Alabama Agric. Exp. Stn., Dep. Bot.
Donald E. Davis
Affiliation:
Alabama Agric. Exp. Stn., Dep. Bot.
Bryan Truelove
Affiliation:
Auburn Univ., AL 36849

Abstract

Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] at 1 × 10−5 and 1 × 10−4 M increased the leakage of previously absorbed, 32P-labeled orthophosphate from the roots of onion (Allium cepa L.), a susceptible species, by 14 and 41 times the control values, respectively. A significant amount of 32P leaked from the roots of the moderately susceptible species, cotton (Gossypium hirsutum L. ‘DPL 61′) and cucumber (Cucumis sativus L. ‘Ashley′), whereas no significant loss of 32P occurred from two tolerant species, soybean [Glycine max (L.) Merr. ‘Bragg′] and corn (Zea mays L. ‘Pioneer 3369A′). At either 1 × 10−7 or 1 × 10−6 M, 1,8-naphthalic anhydride (NA) prevented 32P leakage from onion roots in the presence of 1 × 10−5 M metolachlor. High concentrations of NA [0.1% (w/v) suspensions], however, promoted 32P leakage and did not protect onion roots from the leakage induced by high concentrations (1 × 10−4 M) of metolachlor. Neither metolachlor nor alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], at 1 × 10−4 M, inhibited the uptake of acetate-2-14C or malonic acid-2-14C into excised cotton root tips or the incorporation of the precursors into lipids. Similarly, neither herbicide inhibited phospholipid synthesis by cotton root tips. Incorporation of 14C-choline chloride into phosphatidylcholine was not significantly inhibited by metolachlor.

Type
Research Article
Copyright
Copyright © 1982 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H. and Davis, D. E. 1978. Seed protectant effects on metolachlor absorption and translocation. Proc. South. Weed Sci. Soc. 31:249.Google Scholar
2. Burnside, O. C., Wicks, G. A., and Fenster, E. R. 1971. Protecting corn from herbicide injury by seed treatment. Weed Sci. 19:565568.CrossRefGoogle Scholar
3. Chandler, J. M., Croy, L. M., and Santlemann, P. W. 1972. Alachlor effects on plant nitrogen metabolism and Hill reaction. J. Agric. Food Chem. 20:661664.CrossRefGoogle Scholar
4. Deal, L. M. and Hess, F. D. 1980. An analysis of the growth inhibitory characteristics of alachlor and metolachlor. Weed Sci. 28:168175.CrossRefGoogle Scholar
5. Devlin, R. M. and Cunningham, R. P. 1970. The inhibition of GA3 induction of α-amylase activity in barley endosperm by certain herbicides. Weed Res. 10:316320.CrossRefGoogle Scholar
6. Diner, A. M., Truelove, B., and Davis, D. E. 1978. Metolachlor effects on lipid metabolism in cotton root tips. Proc. South. Weed Sci. Soc. 31:250.Google Scholar
7. Duke, W. B., Slife, F. W., Hanson, J. B., and Butler, H. S. 1975. An investigation on the mechanism of action of propachlor. Weed Sci. 23:142147.CrossRefGoogle Scholar
8. Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347. 32 pp.Google Scholar
9. Jaworski, E. G. 1956. Biochemical action of CDAA, a new herbicide. Science 123:847848.CrossRefGoogle ScholarPubMed
10. Jordan, L. S. and Jolliffe, V. A. 1971. Protection of plants from herbicides with 1,8-naphthalic anhydride as illustrated with sorghum. Bull. Environ. Contam. Toxicol. 6:417421.CrossRefGoogle Scholar
11. Keeley, P. E., Carter, C. H., and Miller, J. H. 1972. Evaluation of the relative phytotoxicity of herbicides to cotton and nutsedge. Weed Sci. 20:7174.CrossRefGoogle Scholar
12. Mann, J. D., Jordan, L. S., and Day, B. E. 1965. A survey of herbicides for their effect upon protein synthesis. Plant Physiol. 40:840843.CrossRefGoogle ScholarPubMed
13. Mann, J. D. and Pu, M. 1968. Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16:197198.CrossRefGoogle Scholar
14. Mellis, J. M. and Kirkwood, R. C. 1980. The uptake, translocation and metabolism of epronaz in selected species. Pestic. Sci. 11:324330.CrossRefGoogle Scholar
15. Moreland, D. E., Malhotra, S. S., Gruenhagen, R. D., and Shokraii, E. H. 1969. Effects of herbicides on RNA and protein synthesis. Weed Sci. 17:556563.CrossRefGoogle Scholar
16. Pillai, C.G.P. and Davis, D. E. 1975. Mode of action of CGA-18762, CGA-17020, and CGA-24705. Proc. South. Weed. Sci. Soc. 28:308314.Google Scholar
17. Pillai, P., Davis, D. E., and Truelove, B. 1979. Effects of metolachlor on germination, growth, leucine uptake, and protein synthesis. Weed Sci. 27:634637.CrossRefGoogle Scholar
18. Rao, V. S. and Duke, W. B. 1976. Effect of alachlor, propachlor, and prynachlor on GA3-induced production of protease and α-amylase. Weed Sci. 24:616618.CrossRefGoogle Scholar
19. Sasaki, S. and Kozlowski, T. T. 1966. Influence of herbicides on respiration in young Pinus seedlings. Nature (London) 210:439440.CrossRefGoogle Scholar
20. Spotanski, R. F. and Burnside, O. C. 1973. Reducing herbicide injury to sorghum with crop protectants. Weed Sci. 21:531536.CrossRefGoogle Scholar
21. St. John, J. B. and Hilton, J. L. 1973. Lipid metabolism as a site of herbicide action. Weed Sci. 21:477480.CrossRefGoogle Scholar
22. Truelove, B. and Davis, D. E. 1977. A herbicide antidote seed-treatment with naphthalic anhydride. Proc. South. Weed Sci. Soc. 30:364.Google Scholar
23. Truelove, B. and Diner, A. M. 1978. Some effects of metolachlor on plant metabolism. Abstr., Weed Sci. Soc. Am. p. 68.Google Scholar
24. Truelove, B., Diner, A. M., Davis, D. E., and Weete, J. D. 1979. Metolachlor, membranes and permeability. Abstr., Weed Sci. Soc. Am. p. 99.Google Scholar
25. Wilkinson, R. E. 1981. Influence of metolachlor on phospholipid synthesis in cotton, soybean and sorghum. Proc. South. Weed Sci. Soc. 34:263.Google Scholar
26. Wilkinson, R. E. and Smith, A. E. 1976. EPTC altered beet disc betacyanin efflux and fatty acid synthesis. Weed Sci. 24:235238.CrossRefGoogle Scholar
27. WSSA Herbicide Handbook Committee. 1979. Herbicide Handbook of the Weed Science Society of America. 4th ed. Weed Sci. Soc. Am., Champaign, IL. 479 pp.Google Scholar