Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T06:03:12.212Z Has data issue: false hasContentIssue false

Microarray analysis of late-season velvetleaf (Abutilon theophrasti) effect on corn

Published online by Cambridge University Press:  20 January 2017

Robert Gulden
Affiliation:
Department of Plant, Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
Sharon A. Clay
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, SD 57007

Abstract

Microarray analysis was used to identify changes in gene expression in corn leaves collected from plants at the V11–14 growth stage that resulted from competition with velvetleaf. The plants were grown in field plots under adequate N (addition of 220 kg N ha−1) and irrigation to minimize N and water stress. Consequently, only differences resulting from competition for micronutrients, light, and perhaps allelopathic stress were anticipated. Genes involved in carbon and nitrogen utilization, photosynthesis, growth and development, oxidative stress, signal transduction, responses to auxin and ethylene, and zinc transport were repressed in corn growing in competition with velvetleaf. Very few genes were induced because of competition with velvetleaf, and those that were provided little indication of the physiological response of corn. No differences were observed in genes responsive to water stress or sequestering/transporting micronutrients other than zinc, indicating that these stresses were not a major component of velvetleaf competition with corn at the developmental stage tested.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ballaré, C. L. and Casal, J. J. 2000. Light signals perceived by crop and weed plants. Field Crops Res. 67:149160.CrossRefGoogle Scholar
Ballaré, C. L., Sánchez, R. A., Scopel, A. L., Casal, J. J., and Ghersa, C. M. 1987. Early detection of neighbor plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 10:551557.CrossRefGoogle Scholar
Ballaré, C. L., Scopel, A. L., and Sánchez, R. A. 1990. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science. 247:329332.CrossRefGoogle ScholarPubMed
Bassani, M., Neumann, P. M., and Gepstein, S. 2004. Differential expression profiles of growth-related genes in the elongation zone of corn primary roots. Plant Mol. Biol. 56:367380.CrossRefGoogle ScholarPubMed
Blackshaw, R. E., Semach, G., and Janzen, H. H. 2002. Fertilizer application method affects nitrogen uptake in weeds and wheat. Weed Sci. 50:634641.CrossRefGoogle Scholar
Bonifas, K. D. and Lindquist, J. L. 2006. Predicting biomass partitioning to root versus shoot in corn and velvetleaf (Abutilon theophrasti). Weed Sci. 54:133137.CrossRefGoogle Scholar
Bosnic, C. A. and Swanton, C. J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.Google Scholar
Bryson, C. T. 1990. Interference and critical time of removal of hemp sesbania (Sesbania exaltata) in cotton (Gossypium hirsutum). Weed Technol. 4:833837.CrossRefGoogle Scholar
Chang, S., Puryear, J., and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113116.CrossRefGoogle Scholar
Churchill, G. A. 2002. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32: (Suppl.). 490495.CrossRefGoogle ScholarPubMed
Clay, D. E., Clay, S. A., Lyons, D. L., and Blumenthal, J. M. 2005a. 13C discrimination in corn grain can be used to separate and quantify yield losses due to water and nitrogen stresses. Weed Sci. 53:2329.CrossRefGoogle Scholar
Clay, S. A., Banken, K. R., Forcella, F., Ellsbury, M. M., Clay, D. E., and Olness, A. E. 2006. Influence of yellow foxtail on corn growth and yield. Comm. Soil Sci. Plant Anal. 37:14211435.CrossRefGoogle Scholar
Clay, S. A., Kleinjan, J., Clay, D. E., Forcella, F., and Batchelor, W. 2005b. Growth and fecundity of several weed species in corn and soybean. Agron. J. 97:294302.CrossRefGoogle Scholar
Colton, C. E. and Einhellig, F. A. 1980. Allelopathic mechanisms of velvetleaf (Abutilon theophrasti Medic., Malvaceae) on soybean. Am. J. Bot. 67:14071413.CrossRefGoogle Scholar
Cousens, R., Brain, P., O'Donovan, J. T., and O'Sullivan, P. A. 1987. The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Sci. 35:720725.Google Scholar
Cousens, R. D. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.CrossRefGoogle Scholar
Devlin, P. F., Yanovsky, M. J., and Kay, S. A. 2003. A genomic analysis of the shade avoidance response in Arabidopsis . Plant Physiol. 133:16171629.CrossRefGoogle ScholarPubMed
Evans, S. P., Knezevic, S. Z., Lindquist, J. T., and Shapiro, C. A. 2003. Influence of nitrogen and duration of weed interference on corn growth and development. Weed Sci. 51:546556.CrossRefGoogle Scholar
Fey, V., Wagner, R., Braütigam, K., Wirtz, M., Hell, R., Dietzmann, A., Leister, D., Oelmüller, R., and Pfannschmidt, T. 2005. Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana . J. Biol. Chem. 280:53185328.CrossRefGoogle ScholarPubMed
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40:441447.CrossRefGoogle Scholar
Kropff, M. J. and van Laar, H. H. 1993. Modelling Crop-Weed Interactions. Wallingford, Oxon, Great Britain: CAB International. 274 p.Google Scholar
Lacombe, E., Van Hawkins, S. W., Doorsselaere, J., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A. M., and Grima-Pettenati, J. 1997. Cinnamoyl-CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11:429441.CrossRefGoogle ScholarPubMed
Lindquist, J. L. 2001. Performance of INTERCOM for predicting corn– velvetleaf interference across north-central United States. Weed Sci. 49:195202.CrossRefGoogle Scholar
Lindquist, J. L., Mortensen, D. A., and Johnson, B. E. 1998. Mechanisms of corn tolerance and velvetleaf suppressive ability. Agron. J. 90:787792.CrossRefGoogle Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS systems for mixed models. Cary, NC: SAS Institute Inc. 633 p.Google Scholar
McDonald, A. J., Riha, S. J., and Mohlerl, C. L. 2004. Mining the record: historical evidence for climatic influences on maize–Abutilon theophrasti competition. Weed Res. 44:439445.Google Scholar
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405410.CrossRefGoogle ScholarPubMed
Norsworthy, J. K. and Oliveira, M. J. 2004. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 52:802807.CrossRefGoogle Scholar
Pierik, R., Cuppens, M. L. C., Voesenek, L. A. C. J., and Visser, E. J. W. 2004. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 136:29282936.CrossRefGoogle ScholarPubMed
Rajcan, I., Chandler, K. J., and Swanton, C. J. 2004. Red–far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Sci. 52:774778.CrossRefGoogle Scholar
Reyes, J. C., Hennig, L., and Gruissem, W. 2002. Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol. 130:10901101.CrossRefGoogle ScholarPubMed
Samarakoon, S. P., Wilson, J. R., and Shelton, H. M. 1990. Growth, morphology and nutritive quality of shaded Stenotaphrum secondatum, Axonopus compressus and Pennisetum clandestinum . J. Agric. Sci. 114:161169.CrossRefGoogle Scholar
Sattin, M., Zanin, G., and Berti, A. 1992. Case study for weed competition/population ecology: velvetleaf (Abutilon theophrasti) in corn (Zea mays). Weed Technol. 6:213219.CrossRefGoogle Scholar
Scholes, C., Clay, S. A., and Brix-Davis, K. 1995. Velvetleaf (Abutilon theophrasti) effect on corn (Zea mays) growth and yield in South Dakota. Weed Technol. 9:665668.CrossRefGoogle Scholar
Steindler, C., Matteucci, A., Sessa, G., Weimar, T., Ohgishi, M., Aoyama, T., Morelli, G., and Ruberti, I. 1999. Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development. 126:42354245.CrossRefGoogle ScholarPubMed
Sterling, T. M., Houtz, R. L., and Putnam, A. R. 1987. Phytotoxic exudates from velvetleaf (Abutilon theophrasti) glandular trichomes. Am. J. Bot. 74:543550.CrossRefGoogle Scholar
Symons, M., Derry, J. M., Karlak, B., Jiang, S., Lemahieu, V., McCormick, F., Francke, U., and Abo, A. 1996. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 8:723734.CrossRefGoogle Scholar
Teasdale, J. R. 1995. Influence of narrow row/high population corn (Zea mays) on weed control and light transmittance. Weed Technol. 9:113118.CrossRefGoogle Scholar
Tian, Q. and Reed, J. W. 2001. Molecular links between light and auxin signaling pathways. J. Plant Growth Regul. 20:274280.CrossRefGoogle Scholar
Tollenaar, M., Nissanka, S. P., Aguilera, A., Weise, S. F., and Swanton, C. J. 1994. Effects of weed interference and soil nitrogen on four maize hybrids. Agron. J. 62:1517.Google Scholar
Van Acker, R. C., Swanton, C. J., and Weise, S. F. 1993. The critical period of weed control in soybean [Glycine max (L.) Merr]. Weed Sci. 41:194200.CrossRefGoogle Scholar
Vandenbussche, F., Vriezen, W. H., Smalle, J., Laarhoven, L. J. J., Harren, F. J. M., and Van Der Straeten, D. 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol. 133:517527.CrossRefGoogle ScholarPubMed
Werner, E. L., Curran, W. S., Harper, J. K., Roth, G. W., and Knievel, D. P. 2004. Velvetleaf (Abutilon theophrasti) interference and seed production in corn silage and grain. Weed Technol. 18:779783.CrossRefGoogle Scholar
Weston, L. A. and Duke, S. O. 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367389.CrossRefGoogle Scholar
Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C., and Pauls, R. S. 2001. Assessing gene significance form cDNA microarray expression data via mixed models. J. Comp. Biol. 8:625637.Google Scholar
Wong, C. C. and Wilson, J. R. 1980. Effects of shading on the growth and nitrogen content of green panic and siratro in pure and mixed swards defoliated at two frequencies. Aust. J. Agric. Res. 31:269285.CrossRefGoogle Scholar
Zimdahl, R. L. 2004. Weed–Crop Competition. A Review. 2nd ed. Ames, IA: Blackwell Publishing. 220 p.CrossRefGoogle Scholar