Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T10:56:10.596Z Has data issue: false hasContentIssue false

Modeling Diclofop Activity on Three Bromus Species

Published online by Cambridge University Press:  12 June 2017

Phillip W. Stahlman*
Affiliation:
Fort Hays Branch, Kansas Agric. Exp. Stn., Hays, KS 67601

Abstract

The methyl ester of diclofop {2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid} mixed with soil at 1, 2, and 3 ppmw reduced the growth of Bromus species in the greenhouse as follows: downy brome (Bromus tectorum L. ♯ BROTE) more than Japanese brome (Bromus japonicus Thunb. ex Murr. ♯ BROJA) more than cheat (Bromus secalinus L. ♯ BROSE). The decrease in herbicide effect (decay) over time was described better using a second-order equation than a first-order equation. Plant response-herbicide dose relationships were described best with a cubic polynomial equation.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1985 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Carter, H. W., Norton, H. W., and Dungan, G. H. 1957. Wheat and cheat. Agron. J. 49:261267.CrossRefGoogle Scholar
2. Hamaker, J. W. 1972. Decomposition: quantitative aspects. Pages 252334 in Goring, C.A.I. and Hamaker, J. W., eds. Organic Chemicals in the Soil Environment, Vol. 1. Marcel Dekker, Inc., New York.Google Scholar
3. Hulbert, L. C. 1955. Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol. Monogr. 25:181213.CrossRefGoogle Scholar
4. Hurle, K. and Walker, A. 1980. Persistence and its prediction. Pages 83122 in Hance, R. J., ed. Interactions Between Herbicides and the Soil. Academic Press, London.Google Scholar
5. Hyzak, D. L. and Zimdahl, R. L. 1974. Rate of degradation of metribuzin and two analogs in soil. Weed Sci. 27:7579.CrossRefGoogle Scholar
6. Klemmedson, J. O. and Smith, J. G. 1964. Cheatgrass (Bromus tectorum L.). Bot. Rev. 30:226262.CrossRefGoogle Scholar
7. Martens, R. 1978. Degradation of the herbicide 14C-diclofop-methyl in soil under different conditions. Pestic. Sci. 9:127134.CrossRefGoogle Scholar
8. Morrow, L. A. and Stahlman, P. W. 1984. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32, Suppl. 1:26.CrossRefGoogle Scholar
9. Peeper, T. F. 1984. Chemical and biological control of downy brome (Bromus tectorum) in wheat and alfalfa in North America. Weed Sci. 32, Suppl. 1:1825.CrossRefGoogle Scholar
10. Runyan, T. J., McNeil, W. K., and Peeper, T. F. 1982. Differential tolerance of wheat (Triticum aestivum) to metribuzin. Weed Sci. 30:9497.CrossRefGoogle Scholar
11. Smith, A. E. 1977. Degradation of the herbicide dichlorfopmethyl in prairie soils. J. Agric. Food Chem. 25:893898.CrossRefGoogle ScholarPubMed
12. Spain, J. D. 1982. Basic Microcomputer Models in Biology. Addison-Wesley Publishing Company.Google Scholar
13. Stahlman, P. W. 1984. Downy brome (Bromus tectorum) control with diclofop in winter wheat (Triticum aestivum). Weed Sci. 32:5962.CrossRefGoogle Scholar
14. Steinbauer, G. P. and Grigsby, B. H. 1957. Field and laboratory studies on the dormancy and germination of the seeds of chess (Bromus secalinus L.) and downy brome (Bromus tectorum L.). Weeds 5:175182.CrossRefGoogle Scholar
15. Weed Science Society of America. 1983. Herbicide Handbook. 5th ed. Weed Sci. Soc. Am., Champaign, IL.Google Scholar
16. Wharton, C. W. and Stanton, T. R. 1920. Fall sown oats. U.S. Dep. Agric. Farmers Bull. 1119.Google Scholar
17. Zimdahl, R. L. and Gwynn, S. M. 1977. Soil degradation of three dinitroanilines. Weed Sci. 25:247251.CrossRefGoogle Scholar