Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:52:26.742Z Has data issue: false hasContentIssue false

Modeling the emergence of North African knapweed (Centaurea diluta), an increasingly troublesome weed in Spain

Published online by Cambridge University Press:  23 March 2020

Carlos Sousa-Ortega*
Affiliation:
Ph.D Candidate, Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenieria Agronomica, Universidad de Sevilla, Seville, Spain
Aritz Royo-Esnal
Affiliation:
Researcher, Departamento d’Hortofruticultura, Botànica i Jardineria, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Spain
Antonio DiTommaso
Affiliation:
Professor and Chair, Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
Jordi Izquierdo
Affiliation:
Professor, Departamento d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, Barcelona, Spain
Iñigo Loureiro
Affiliation:
Titular Researcher, Departamento de Sanidad Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
Ana I. Marí
Affiliation:
Reseacher, Departamento de Sanidad Vegetal, Centro de Investigación y Tecnología Agroalimentaria, Zaragoza, Spain
Fernando Cordero
Affiliation:
Researcher, Consejo Superior de Investigaciones Científicas, Toledo, Spain
Manuel Vargas
Affiliation:
Researcher, Field Trial Services Agroconsulting, Sevilla, Spain
Milagros Saavedra
Affiliation:
Researcher, Protección de Cultivos, Instituto de Investigación y Formación Agraria y Pesquera, Cordoba, Spain
José A. Paramio
Affiliation:
Researcher, Asociación de Investigación para la Mejora del Cultivo de la Remolacha Azucarera, Valladolid, Spain
José L. Fernández
Affiliation:
Researcher, ADAMA Agriculture España SA, Madrid, Spain
Joel Torra
Affiliation:
Professor, Departamento d’Hortofruticultura, Botànica i Jardineria, Escola Tècnica Superior d'Ènginyeria Agrària, Universitat de Lleida, Lleida, Spain
José M. Urbano
Affiliation:
Professor, Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenieria Agronomica, Universidad de Sevilla, Seville, Spain
*
Author for correspondence: Carlos Sousa-Ortega, Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Seville, Spain. (Email: csousa1@us.es)

Abstract

North African knapweed (Centaurea diluta Aiton) is an annual weed that is widespread in southern Spain and is of increasing concern in dryland cropping systems. Despite its expanding range in Spain, there is limited information on the emergence timing and pattern of this species, knowledge of which is critical for developing more timely and effective management strategies. Therefore, there is a need to develop simple and reliable models to predict the timing and emergence of this annual weed under dryland conditions. A multi-location field experiment was established across Spain in 2016 to 2017 to assess the emergence of C. diluta. At each of 11 locations, seeds were sown in the fall, and emergence was recorded. Overall emergence averaged 39% in the first year across all sites and 11% in the second year. In both years, the main emergence flush occurred at the beginning of the growing season. A three-parameter Weibull function best described seedling emergence of C. diluta. Emergence models were developed based on thermal time (TT) and hydrothermal time (HTT) and showed high predictability, as evidenced by root mean-square error prediction values of 10.8 and 10.7, respectively. Three cardinal points were established for TT and HHT at 0.5, 10, and 35 C for base, optimal, and ceiling temperatures, respectively, while base water potential was estimated at −0.5 MPa.

Type
Research Article
Copyright
© Weed Science Society of America, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ramon G. Leon, North Carolina State University

References

Barros, JB, Freixial, R (2010) El control de malezas en agricultura de conservación y siembra directa. Proceedings of the Congreso Europeo de Agricultura de Conservación. Madrid, Spain, October 1, 2010Google Scholar
Barzman, M, Dachbrodt-Saaydeh, S (2011) Comparative analysis of pesticide action plans in five European countries. Pest Manag Sci 67:14811485CrossRefGoogle ScholarPubMed
Bradford, KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248260CrossRefGoogle Scholar
Brevik, EC, Fenton, TE (2002) Influence of soil water content, clay, temperature, and carbonate minerals on electrical conductivity readings taken with an EM-38. Soil Horizons 43:913CrossRefGoogle Scholar
Cardina, J, Herms, CP, Herms, DA, Forcella, F (2007) Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci 55:455464CrossRefGoogle Scholar
Castroviejo, S, Valdés-Bermejo, E, Rivas-Martínez, S, Costa, M (1980) Novedades florísticas de Doñana. An Jard Bot Madr 36:203244Google Scholar
Domínguez-Borrero, MD, García-Regal, L, González-Andújar, JL, Bastida, F (2015) Diversidad y abundancia de semillas de malas hierbas en la cosecha de cereal en la baja Andalucía occidental. Actas la Soc Española Malherbologia 1:325331Google Scholar
European Council (1991) Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. Off J Eur Communities L 230:132Google Scholar
European Parliament (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off J Eur Union 50:150Google Scholar
Finch-Savage, WE (2004) The use of population-based threshold models to describe and predict the effects of seedbed environment on germination and seedling emergence of crops. Pages 5195in Benech-Arnold, RL, Sánchez, RA, eds. Handbook of Seed Physiology: Applications to Agriculture. New York: Haworth PressGoogle Scholar
Fuentes-Yaguë, JL (1998) Técnicas de riego. Madrid: Ministerio de Agricultura, Pesca y Alimentación. 472 pGoogle Scholar
García, AL, Recasens, J, Forcella, F, Torra, J, Royo-Esnal, A (2013) Hydrothermal emergence model for ripgut brome (Bromus diandrus). Weed Sci 61:146153CrossRefGoogle Scholar
Grundy, AC (2003) Predicting weed emergence: a review of approaches and future challenges. Weed Res 43:111CrossRefGoogle Scholar
Guillemin, J-P, Bellanger, S, Reibeil, C, Darmency, H (2017) Longevity, dormancy and germination of Cyanus segetum. Weed Res 57:361371CrossRefGoogle Scholar
Guillemin, JP, Gardarin, A, Granger, S, Reibel, C, Munier-Jolain, N, Colbach, N (2013) Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Res 53:7687CrossRefGoogle Scholar
Gutierrez, AP, Pitcairn, MJ, Ellis, CK, Carruthers, N, Ghezelbash, R (2005) Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: a GIS based supply–demand demographic model. Biol Control 34:115131CrossRefGoogle Scholar
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com/Summary/Species.aspx. Accessed: October 18, 2018Google Scholar
Holt, JS (1991) Applications of physiological ecology to weed science. Weed Sci 39:521528CrossRefGoogle Scholar
Izquierdo, J, Bastida, F, Lezaún, JM, Sánchez del Arco, MJ, Gonzalez-Andujar, JL (2013) Development and evaluation of a model for predicting Lolium rigidum emergence in winter cereal crops in the Mediterranean area. Weed Res 53:269278CrossRefGoogle Scholar
Izquierdo, J, González-Andújar, JL, Bastida, F, Lezaún, JA, del Arco, MJS (2009) A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Sci 57:660664CrossRefGoogle Scholar
Joley, DB, Maddox, DM, Schoenig, SE, Mackey, BE (2003) Parameters affecting germinability and seed bank dynamics in dimorphic achenes of Centaurea solstitialis in California. Can J Bot 81:9931007CrossRefGoogle Scholar
Joley, DB, Schoenig, SE, Casanave, KA, Maddox, DM, Mackey, BE (1997) Effect of light and temperature on germination of dimorphic achenes of Centautea solstitialis in California. Can J Bot 75:21312139CrossRefGoogle Scholar
Knezevic, SZ, Datta, A (2015) The critical period for weed control: revisiting data analysis. Weed Sci 63:188202CrossRefGoogle Scholar
Kropff, MJ, Spitters, CJT (1991) A simple model of crop loss by weed competition from early observations on relative leaf area of weeds. Weed Res 31:97105CrossRefGoogle Scholar
Kutter, T, Louwagie, G, Schuler, J, Zander, P, Helming, K, Hecker, J-M (2011) Policy measures for agricultural soil conservation in the European Union and its member states: policy review and classification. L Degrad Dev 22:1831CrossRefGoogle Scholar
Leguizamón, ES, Fernández-Quintanilla, C, Barroso, J, González-Andújar, JL (2005) Using thermal and hydrothermal time to model seedling emergence of Avena sterilis ssp. ludoviciana in Spain. Weed Res 45:149156CrossRefGoogle Scholar
Meier, U, ed (2001) Growth Stages of Mono- and Dicotyledonous Plants. 2nd ed. BBCH Monograph. Bonn, Germany: Federal Biological Research Centre for Agriculture and ForestryGoogle Scholar
Nosratti, I, Abbasi, R, Bagheri, A, Bromandan, P (2017) Seed germination and seedling emergence of Iberian starthistle (Centaurea iberica). Weed Biol Manag 17:144149CrossRefGoogle Scholar
Onofri, A, Gresta, F, Tei, F (2010) A new method for the analysis of germination and emergence data of weed species. Weed Res 50:187198CrossRefGoogle Scholar
Ortiz, R, Contreras, JM, Ruiz, A, Sanz, MA, Romero, M, Gordillo, M, Taberner, A, Urbano, JM (2015) Malas hierbas preocupantes en españa. Actas la Soc Española Malherbologia 1:497503Google Scholar
Pujadas-Salvá, A, Hernández-Bermejo, JE (1986) Contribución al conocimiento de la flora arvense y ruderal de la provincia de Córdoba. Lagascaiia 14:203225Google Scholar
Ritz, C, Baty, F, Streibig, JC, Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021CrossRefGoogle ScholarPubMed
Roman, ES, Murphy, SD, Swanton, CJ (2000) Simulation of Chenopodium album seedling emergence. Weed Sci 48:217224CrossRefGoogle Scholar
Royo-Esnal, A, García, AL, Torra, J, Forcella, F, Recasens, J (2015) Describing Polygonum aviculare emergence in different tillage systems. Weed Res 55:387395CrossRefGoogle Scholar
Royo-Esnal, A, Torra, J, Conesa, JA, Recasens, J (2010) Characterisation of the emergence of autumn and spring cohorts of Galium spp. in winter cereals. Weed Res 50:572585CrossRefGoogle Scholar
Royo-Esnal, A, Torra, J, Conesa, JA, Recasens, J (2012) Emergence and early growth of Galium aparine and Galium spurium. Weed Res 52:458466CrossRefGoogle Scholar
Saavedra, M (1997) Centaurea diluta Aiton, a new weed in Andalusia. Pages 173–176 in Proceedings of the 6th Congreso de Malherbologia. Valencia, Spain: Sociedad Española de MalherbologíaGoogle Scholar
Saavedra, M, Fuentres, M, Carranza, R, Sanchez-Gamonoso, M, Álcantaea, C (2017) Ensayo de herbicidas de preemergencia en condiciones de sequía contra Centaurea diluta en Trigo duro. Córdoba, Spain: Conserjería de Agricultura, Pesca y Desarrollo Rural Instituto de Investigación y Formación Agraria y Pesquera. 15 pGoogle Scholar
Saavedra, M, Sánchez-Gamonoso, M, Carranza, R, Fuentes, M, Alcántara, C (2018) Ensayo de herbicidas de postemergencia contra Centaurea diluta en Trigo Duro. Córdoba, Spain: Consejería de Agricultura, Pesca y Desarrollo Rural Instituto de Investigación y Formación Agraria y Pesquera. 14 pGoogle Scholar
Saxton, KE, Rawls, WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:15691578CrossRefGoogle Scholar
Shaner, DL, Beckie, HJ (2014) The future for weed control and technology. Pest Manag Sci 70:13291339CrossRefGoogle ScholarPubMed
Sousa-Ortega, C, Chamber, E, Urbano, JM, Izquierdo, J, Loureiro, I, Marí, AI, Cordero, F, Vargas, M, Saavedra, M, Lezaun, JA, Paramio, JA, Fernández, JL, Torra, J, Royo-Esnal, A (2019) Should emergence models for Lolium rigidum be changed throughout climatic conditions? The case of Spain. Crop Prot:105012Google Scholar
Susanna, A, Garcia-Jacas, N (2007) Tribe Cardueae. Pages 123147in Kadereit, JW, Jeffrey, C, eds. The Families and Genera of Vascular Plants. Volume 8: Flowering Plants. Berlin: SpringerGoogle Scholar
Valdes, B, Talavera, S, Fernandez-Galiano, E (1987) Flora vascular de Andalucía occidental. Volume 3. Barcelona: Ketres. P 156Google Scholar
Vázquez, FM (2008) Centaurea diluta Aiton. Page 87in Vicepresidencia Segunda y Consejería de Economía, Comercio e Innovación. Junta de Extremadura, ed. Folia Botanica Extremadurensis. Volume 2. Badajoz: Grupo HABITATGoogle Scholar
Zimdahl, RL (2007) Fundamentals of Weed Science. London: Elsevier/Academic Press. 666 pGoogle Scholar
Supplementary material: File

Sousa-Ortega et al. supplementary material

Tables S1-S2

Download Sousa-Ortega et al. supplementary material(File)
File 20 KB