Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T12:08:53.108Z Has data issue: false hasContentIssue false

Multiple Pro197 Substitutions in the Acetolactate Synthase of Corn Poppy (Papaver rhoeas) Confer Resistance to Tribenuron

Published online by Cambridge University Press:  20 January 2017

Nikolaos S. Kaloumenos
Affiliation:
Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
Christos A. Dordas
Affiliation:
Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
Grigorios C. Diamantidis
Affiliation:
Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
Ilias G. Eleftherohorinos*
Affiliation:
Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
*
Corresponding author's E-mail: eleftero@agro.auth.gr

Abstract

Variations in the acetolactate synthase (ALS) gene sequence were determined from 28 populations of corn poppy resistant (R) to tribenuron and from 6 populations susceptible (S) to this herbicide. The ALS gene fragment (634 bp) sequence revealed in R populations five point mutations at the codon Pro197, and among them the substitution of Pro197 by Ala was the most common. The sequencing chromatograms revealed that nine R individuals had only the mutant ALS gene and were homozygous (RR), 18 R individuals had both the wild type and the mutant ALS gene and were heterozygous (RS), whereas one R individual was heterozygous but with two different mutant ALS alleles (R1R2). The use of restriction digestion profile analysis to verify the DNA sequence results by detecting the existence of point mutations at the codon 197 managed to distinguish the R and S alleles and confirmed the results obtained from the sequencing chromatograms analysis. The secondary protein structure prediction suggested the formation of novel β-strands for each of the five mentioned amino acid substitutions that was not present in wild type ALS around the mutant site. These findings support the hypothesis that the substitution of Pro197 by Ser, Thr, Ala, Arg, or Leu resulted in altered secondary structure, which stabilizes an ALS tertiary conformation that prevents tribenuron binding and thus confers resistance to this herbicide.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J., Hall, L. M., Tardif, F. J., and Seguin-Swartz, G. 2007. Acetolactate synthase inhibitor-resistant stinkweed (Thlaspi arvense L.) in Alberta. Can. J. Plant Sci. 87:965972.CrossRefGoogle Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic. Sci. 55:507516.3.0.CO;2-G>CrossRefGoogle Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Ηoltum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). ΙΙ Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol. 95:10361043.CrossRefGoogle Scholar
Claude, J. P., Gabard, J., De Prado, R., and Taberner, A. 1998. An ALS-resistant population of Papaver rhoeas in Spain. Pages 141147. in. Proceedings of the Compte Rendu XVII Conference Columa, Journees Internationales sur la Lutte contre les Mauvaises Herbes. Montpelier, France ANPP.Google Scholar
Duggleby, R. G., McCourt, J. A., and Guddat, L. W. 2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46:309324.CrossRefGoogle ScholarPubMed
Durán-Prado, M., Osuna, M. D., De Prado, R., and Franco, A. R. 2004. Molecular basis of resistance to sulfonylureas in Papaver rhoeas. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Fang, L. Y., Gross, P. R., Chen, P. H., and Lillis, M. 1992. Sequence of two acetohydroxyacid synthase genes from Zea mays. Plant Mol. Biol. 18:11851187.CrossRefGoogle ScholarPubMed
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.CrossRefGoogle Scholar
Heap, I. 2009. International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: January 26, 2009.Google Scholar
Kaloumenos, S. N. and Eleftherohorinos, I. G. 2008. Corn poppy (Papaver rhoeas L.) resistance to ALS-inhibiting herbicides and its impact on growth rate. Weed Sci. 56:789796.CrossRefGoogle Scholar
Keeler, S. J., Sanders, P., Smith, J. K., and Mazur, B. J. 1993. Regulation of tobacco acetolactate syntase gene expression. Plant Physiol. 102:10091018.CrossRefGoogle Scholar
Kolkman, J. M., Slabaugh, M. B., Bruniard, J. M., Berry, S., Bushman, B. S., Olungu, C., Maes, N., Abratti, G., Zambelli, A., Miller, J. F., Leon, A., and Knapp, S. J. 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor. Appl. Genet. 109:11471159.CrossRefGoogle ScholarPubMed
Marshall, R. and Moss, S. R. 2007. Characterization and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Res. 48:439447.CrossRefGoogle Scholar
Mazur, B. J., Chui, C. F., and Smith, J. K. 1987. Isolation and characterization of plant genes coding for acetolactate synthase the target enzyme for two classes of herbicides. Plant Physiol. 85:11101117.CrossRefGoogle ScholarPubMed
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: compilations for management. Weed Sci. 52:448453.CrossRefGoogle Scholar
Quellet, T., Rutledge, R. G., and Miki, B. L. 1992. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J. 2:321330.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139. In Powles, S. B. and Holtum, J. A. M. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL CRC.Google Scholar
Scarabel, L., Carraro, N., Sattin, M., and Varotto, S. 2004. Molecular basis and genetic characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant Sci. 166:703709.CrossRefGoogle Scholar
Sibony, M., Michel, A., Haas, H. U., Rubin, B., and Hurle, K. 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res. 41:509522.CrossRefGoogle Scholar
Stidham, M. A. 1991. Herbicides that inhibit acetolactate synthase. Weed Sci. 39:428434.CrossRefGoogle Scholar
Tan, K. M. and Medd, R. W. 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance associated with herbicide resistance. Plant Sci. 163:195205.CrossRefGoogle Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.CrossRefGoogle Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2009. ALS mutations from herbicide-resistant weeds. http://www.weedscience.com. Accessed: January 24, 2009.Google Scholar
Uchino, A., Ogata, S., Kohara, H., Yoshida, S., Yoshioka, T., and Watanabe, H. 2007. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biol. Manage. 7:8996.CrossRefGoogle Scholar
Uchino, A. and Watanabe, H. 2002. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biol. Manage. 2:104109.CrossRefGoogle Scholar
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51:831838.CrossRefGoogle Scholar