Published online by Cambridge University Press: 12 June 2017
PALWEED:WHEAT is a bioeconomic decision model for determining profit-maximizing postemergence herbicide treatments for winter wheat in the Washington–Idaho Palouse region. PALWEED:WHEAT performed relatively well economically in 2 yr of on-farm field tests. However, the model was less sensitive than desired in prescribing postemergence broadleaved herbicides in the presence of high densities of broadleaved weed seedlings. Therefore, PALWEED:WHEAT was revised in response to the field testing. This paper compares the revised model's agronomic and economic performance to the original model in computer simulations. The revised model, PALWEED:WHEAT II, differs from the original model in several respects: (1) exponential functions replace linear functions in predicting weed survival, (2) preplant application of a nonselective herbicide is entered as an exogenous binary variable, (3) separate indices of broadleaved and grass competition are substituted for an aggregate weed competition index in the wheat yield function, (4) hyperbolic replaces logistic functional representation of weed damage to wheat yield, and (5) separate models are estimated for winter wheat after spring dry pea and for winter wheat in all examined crop rotation positions. In simulations including a variety of agronomic and economic conditions, PALWEED:WHEAT II recommended postemergence herbicide types and rates that consistently complied with agronomic and economic theory. Furthermore, the revised model, especially when estimated from the relevant wheat after pea data set, was markedly more balanced in recommending both broadleaved and grass herbicides in response to observed densities of both weed groups. The substantial change in herbicide recommendations in response to changes in model functional specifications following field testing confirms the importance of field testing and revision of bioeconomic decision models.
current address: Korea Rural Economic Institute, Seoul, Korea