Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T02:53:36.888Z Has data issue: false hasContentIssue false

Phytoene Desaturase, the Essential Target for Bleaching Herbicides

Published online by Cambridge University Press:  12 June 2017

Gerhard Sandmann
Affiliation:
Univ. Konstanz, Konstanz, Germany
Arno Schmidt
Affiliation:
Univ. Konstanz, Konstanz, Germany
Hartmut Linden
Affiliation:
Univ. Konstanz, Konstanz, Germany
Peter Böger
Affiliation:
Univ. Konstanz, Konstanz, Germany

Abstract

Many bleaching herbicides with different core structures inhibit phytoene desaturase (PD), a membrane-bound enzyme in the carotenogenic pathway catalyzing the hydrogen abstraction step at the first C40 precursor of β-carotene. Prospects are good that new PD-active herbicides will be discovered by screening for bleaching activity. Accordingly, interest in PD enzymology and molecular genetics has increased. Although active carotenogenic cell-free systems are available, no isolation of PD has been achieved since the enzyme cannot be detected in its isolated form due to complete loss of activity. A portion of the Rhodobacter PD gene was incorporated into an appropriate plasmid which could be expressed in E. coli. This system was used to produce an antibody specific against PD from higher plants as well as Rhodobacter. All PDs assayed had an apparent molecular weight of 52 to 55 kDa. A Rhodobacter gene probe hybridized with a 3.1 kbBamH I fragment from Aphanocapsa which allowed us to sequence the PD gene from this cyanobacterium. Its DNA sequence matched with the apparent molecular weight of the PD band in the western blot, and a fusion-gene product was found to be immunoreactive with the Rhodobacter PD antibody, Anacystis mutants were produced exhibiting cross-resistance against norflurazon and fluorochloridone. Apparently, this resistance is due to an altered PD with concurrent decrease of inhibitor binding affinity. Cloning of the resistant gene into the wild type is in progress.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Armstrong, G. A., Alberti, M., Leach, F., and Hearst, J. E. 1989. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus . Mol. Gen. Genet. 216:254268.Google Scholar
2. Armstrong, G. A., Schmidt, A., Sandmann, G., and Hearst, J. E. 1990. Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus . J. Biol. Chem. 265:83298338.CrossRefGoogle ScholarPubMed
3. Babczinski, P., Blunck, M., Sandmann, G., Schmidt, R., Shiokawa, K., and Yasui, K. 1990. Substituted tetrahydropyrimidinones: A new herbicidal class of compounds inducing chlorosis by inhibition of phytoene desaturation. Pestic. Sci. 30:339342.Google Scholar
4. Böger, P. and Sandmann, G. 1990. Modern herbicides affecting typical plant processes. Pages 173216 in Bowers, W. S., Ebing, W., Martin, D., and Wegler, R., eds. Chemistry of Plant Protection. Vol. 6. Springer, Berlin.Google Scholar
5. Bramley, P. M. and Sandmann, G. 1985. In vitro and in vivo biosynthesis of xanthophylls in the cyanobacterium Aphanocapsa . Phytochemistry 24:29192922.CrossRefGoogle Scholar
6. Bramley, P. M. and Sandmann, G. 1987. Solubilization of carotenogenic enzymes of Aphanocapsa . Phytochemistry 26:19351939.Google Scholar
7. Britton, G. 1988. Biosynthesis of carotenoids. Pages 133182 in Goodwin, T. W., ed. Plant Pigments. Academic Press, London.Google Scholar
8. Chamovitz, D., Packer, I., Sandmann, G., Böger, P., and Hirschberg, J. 1990. Cloning a gene for norflurazon resistance in cyanobacteria. Z. Naturforsch. 45c:482486.CrossRefGoogle Scholar
9. Clarke, I. E., Bramley, P. M., Sandmann, G., and Böger, P. 1982. Herbicide action on carotenogenesis in a photosynthetic cell-free system. Pages 549554 in Wintermans, J.F.G.M. and Kniper, P.J.C., eds. Biochemistry and Metabolism of Plant Lipids. Elsevier, Amsterdam.Google Scholar
10. Clarke, I. E., Sandmann, G., Bramley, P. M., and Böger, P. 1982. Carotene biosynthesis with isolated photosynthetic membranes. FEBS Lett. 140:203206.CrossRefGoogle Scholar
11. Cramp, M. C., Gilmour, J., Hatton, L. R., Hewett, R. H., Nolan, C. J., and Parnell, E. W. 1985. Diflufenican — a new selective herbicide. Proc. Br. Crop Prot. Conf.—Weeds 1:2328.Google Scholar
12. Dayhoff, M. D., Barker, W. C., and Hunt, L. T. 1983. Establishing homologies in protein sequences. Methods Enzymol. 91:524545.CrossRefGoogle ScholarPubMed
13. Foote, C. 1976. Photosensitized oxidation and singlet oxygen. Pages 85113 in Pryor, W. A., ed. Free Radicals in Biology. Vol. II. Academic Press, New York.Google Scholar
14. Giuliano, G., Pollock, D., and Scolnik, P. A. 1986. The gene crt I mediates the conversion of phytoene into colored carotenoids in Rhodoseudomonas capsulata . J. Biol. Chem. 261:1292512929.CrossRefGoogle Scholar
15. Kunert, K. J. and Böger, P. 1981. The bleaching effect of the diphenyl ether herbicide oxyfluorfen. Weed Sci. 29:169173.Google Scholar
16. Lay, M. M. and Niland, A. M. 1983. The herbicidal mode of action of R 40244 and its absorption by plants. Pestic. Biochem. Physiol. 19:337343.Google Scholar
17. Linden, H., Sandmann, G., Chamovitz, D., Hirschberg, J., and Böger, P. 1990. Biochemical characterization of Synechococcus mutants selected against the bleaching herbicide norflurazon. Pestic. Biochem. Physiol. 36:4651.Google Scholar
18. Mayer, M. P., Bartlett, D. L., Beyer, P., and Kleinig, H. 1989. The in vitro mode of action of bleaching herbicides on the desaturation of 15-cis phytoene and cis-ζ-carotene in isolated daffodil chromoplasts. Pestic. Biochem. Physiol. 34:111117.CrossRefGoogle Scholar
19. Mayonado, D. J., Hatzios, K. K., Orcutt, D. M., and Wilson, H. P. 1989. Evaluation of the mechanism of action of the bleaching herbicide SC-0051 by HPLC analysis. Pestic. Biochem. Physiol. 35:138145.Google Scholar
20. Mets, L. and Thiel, A. 1989. Biochemistry and genetic control of the photosystem II herbicide target site. Pages 124 in Böger, P. and Sandmann, G., eds., Target Sites of Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
21. Nicolaus, B., Sandmann, G., Watanabe, H., Wakabayashi, K., and Böger, P. 1989. Herbicide-induced peroxidation: influence of light and diuron on protoporphyrin DC formation. Pestic. Biochem. Physiol. 35:192201.Google Scholar
22. Rogers, D. D., Kirby, B. W., Hulbert, J. C., Bledsoe, M. E., and Hill, L. V. 1987. RE-40885: a new broadleaf herbicide in cotton, peanut sorghum and sunflower. Proc. Br. Crop Prot. Conf.—Weeds 1:6975.Google Scholar
23. Sandmann, G. 1988. In vitro carotenoid biosynthesis in Aphanocapsa . Methods Enzymol. 167:329335.CrossRefGoogle Scholar
24. Sandmann, G. and Böger, P. 1985. Herbizidwirkungen im Chloroplasten. Pages 139169 in Böger, P., ed. Wirkstoffe im Zellgeschehen, Universitätsverlag Konstanz, Konstanz.Google Scholar
25. Sandmann, G. and Böger, P. 1989. Inhibition of carotenoid biosynthesis by herbicides. Pages 2544 in Böger, P. and Sandmann, G., eds. Target Sites for Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
26. Sandmann, G., Bramley, P. M., and Böger, P. 1985. New herbicidal inhibitors of carotene biosynthesis. J. Pestic. Sci. (Japan) 10:1924.Google Scholar
27. Sandmann, G. and Kowalczyk, S. 1989. In-vitro carotenogenesis and characterization of the phytoene desaturase reaction in Anacystis . Biochem. Biophys. Res. Commun. 163:916921.CrossRefGoogle ScholarPubMed
28. Sandmann, G., Linden, H., and Böger, P. 1989. Enzyme-kinetic studies on the interaction of norflurazon with phytoene desaturase. Z. Naturforsch. 44c:787790.Google Scholar
29. Sandmann, G., Ward, C. E., Lo, W. C., Nagy, J. O., and Böger, P. 1990. The bleaching herbicide flurtamone interferes with phytoene desaturase. Plant Physiol. 94:476478.Google Scholar
30. Schmidt, A. and Sandmann, G. 1990. Cloning and nucleotide sequence of the gene encoding phytoene dehydrogenase from Aphanocapsa PCC 6714. Gene 91:113117.Google Scholar
31. Schmidt, A., Sandmann, G., Armstrong, G. A., Hearst, J. E., and Böger, P. 1989. Immunological detection of phytoene desaturase in algae and higher plants using an antiserum raised against a bacterial fusion-gene construct. Eur. J. Biochem. 184:375378.CrossRefGoogle ScholarPubMed
32. Soeda, T. and Uchida, T. 1987. Inhibition of pigment synthesis by 1,3-dimethyl-4-(2,4-dichlorobenzoyl)-5-hydroxypyrazole, norflurazon and new herbicidal compounds in radish and flatsedge plants. Pestic. Biochem. Physiol. 29:3542.Google Scholar
33. Taylor, D. P., Cohen, S. N., Clark, W. G., and Marrs, B. L. 1983. Alignment of genetic and restriction maps of the photosynthesis region of Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J. Bacteriol. 154:580590.Google Scholar
34. Zsebo, K. M., and Hearst, J. E. 1984. Genetic-physical mapping of a photosynthetic gene cluster from Rhodobacter capsulata . Cell 37:937947.Google Scholar