Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T13:56:26.540Z Has data issue: false hasContentIssue false

Potential Antidotes Against Buthidazole Injury to Corn (Zea mays)

Published online by Cambridge University Press:  12 June 2017

Kriton K. Hatzios
Affiliation:
Dep. Crop and Soil Sci., Pestic. Res. Center, Michigan State Univ., E. Lansing, MI 44824
Donald Penner
Affiliation:
Dep. Crop and Soil Sci., Pestic. Res. Center, Michigan State Univ., E. Lansing, MI 44824

Abstract

Buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} may be useful for selective weed control in corn (Zea mays L.) but injures corn seedlings at high rates. Greenhouse studies were initiated to test potential antidotes for buthidazole injury to corn seedlings. NA (1,8-naphthalic anhydride) and CDAA (N,N-diallyl-2-chloroacetamide) were the most effective of six chemicals evaluated. A ratio of 1:3 (buthidazole: CDAA) appeared to be optimal for the protection effect. CDAA appeared to be more effective than NA. Since both CDAA and NA offered limited protection but R-25788 did not, this action appears to be through a different mechanism than the one proposed for the thiocarbamate or acetanilide herbicides. The other chemicals tested were R-25788 (2,2-dichloro-N,N-diallylacetamide), R-29148 (2,2-dimethyl-5-methyl-dichloroace-tyloxazolidine), carboxin (2,3-dihydro-5-carboxanilido-6-methyl-1,4-oxanthiin) and gibberellin (GA3). Seven herbicides, members of the acetanilide, thiocarbamate, and dinitroaniline groups, were also tested for their antagonistic interactions but none offered protection.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anonymous. 1977. Experimental herbicide VEL-5026 for agricultural use. Tech. Inform. Brochure issued by Velsicol Chemical Corp., Chicago, Illinois, 5 pp.Google Scholar
2. Blair, A. M., Parker, C., and Kasasian, L. 1976. Herbicide protectants and antidotes – A review. PANS 22:6574.Google Scholar
3. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1979. Effect of R-25788 on EPTC metabolism in corn (Zea mays L.). Weed Sci. 26:167171.CrossRefGoogle Scholar
4. Chang, F. Y., Bandeen, J. D., and Stephenson, G. R. 1973. N,N-diallyl-α,α-dichloroacetamide (R-25788) as an antidote for EPTC and other herbicides in corn. Weed Res. 13:399406.Google Scholar
5. Chang, F. Y., Stephenson, G. R., and Bandeen, J. D. 1973. Comparative effects of three EPTC antidotes. Weed Sci. 21:292295.Google Scholar
6. Chang, F. Y., Stephenson, G. R., Anderson, G. W., and Bandeen, J. D. 1974. Control of wild oats in oats with barban plus antidote. Weed Sci. 22:546548.Google Scholar
7. Chang, F. Y., Marsh, H. V. Jr., and Jennings, P. H. 1975. Effect of alachlor on Avena seedlings: Inhibition of growth and interaction with gibberellic acid and indoloacetic acid. Pestic. Biochem. Physiol. 5:323329.Google Scholar
8. Ellis, J. F., Peek, J. W., Boechle, J. Jr., and Muller, G. 1978. A new herbicide safener which permits effective grass control in sorghum. Abstr. Weed Sci. Soc. Am. pp. 2122.Google Scholar
9. Friesen, G. H. 1979. Protection of snapbeans from substituted urea injury by prior treatment with dinitroaniline herbicides. Can. J. Plant Sci. 59:535537.CrossRefGoogle Scholar
10. Guneyli, E. 1971. Factors affecting the action of 1,8-naphthalic anhydride in corn treated with S-ethyl-dipropylthiocarbamate (EPTC.). Diss. Abstr. Int. (B) 32:19571958.Google Scholar
11. Hatzios, K. K. and Penner, D. 1979. Mode of buthidazole. Abstr. Weed Sci. Soc. Am. pp. 104105.Google Scholar
12. Hatzios, K. K., Penner, D., and Bell, D. 1979. Inhibition of photosynthetic electron transport in isolated spinach chloroplasts by two 1,3,4-thiadiazolyl derivatives. Plant Physiol. Suppl. 63(5):41.Google Scholar
13. Hoffman, O. L. 1962. Chemical seed treatments as herbicide antidotes. Weeds 10:332–323.Google Scholar
14. Hoffman, O. L. 1978. Herbicide antidotes: from concept to practice. Pages 113 in Casida, J. E. and Pallos, F. M., eds, Chemistry and Action of Herbicide Antidotes. Academic Press, New York.Google Scholar
15. Holm, R. E. and Szabo, S. S. 1974. Increased metabolism of a pyrrolidine urea herbicide in corn by a herbicide antidote. Weed Res. 14:119122.CrossRefGoogle Scholar
16. Jordan, L. S. and Jollife, V. A. 1971. Protection of plants from herbicides with 1,8-naphthalic anhydride as illustrated with sorghum. Bull. Environ. Contam. Toxicol. 6:417421.CrossRefGoogle Scholar
17. Ladlie, J. S., Meggitt, W. F., and Penner, D. 1977. Effect of trifluralin and metribuzin combinations on soybean tolerance to metribuzin. Weed Sci. 25:8893.Google Scholar
18. Lay, M. M. and Casida, J. E. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxication by elevating corn root glutathione content and glutathione-S-transferase activity. Pestic. Biochem. Physiol. 6:442456.Google Scholar
19. Lay, M. M. and Casida, J. E. 1978. Involvement of glutathione and glutathione S-transferases in the action of dichloroacetamide antidotes for thiocarbamate herbicides. Pages 151160 in Casida, J. E. and Pallos, F. M., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.Google Scholar
20. Leavitt, J. R. C. and Penner, D. 1978. Protection of corn (Zea mays) from acetanilide herbicidal injury with the antidote R-25788. Weed Sci. 26:653659.Google Scholar
21. Leavitt, J. R. C. and Penner, D. 1978. Potential antidotes against acetanilide herbicide injury to corn (Zea mays . Weed Res. 18: 281286.CrossRefGoogle Scholar
22. Leavitt, J. R. C. and Penner, D. 1979. The in vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J. Agric. Food Chem. 27:533536.CrossRefGoogle Scholar
23. Miller, S. D. and Nalewaja, J. D. 1976. Herbicide antidotes. Proc. North Cent. Weed Control Conf. 31:175.Google Scholar
24. Nyffeler, A., Berger, H. R., and Hensley, J. 1978. Laboratory studies on the behavior of the safener CGA-43089. Abstr. Weed Sci. Soc. Am. p. 22.Google Scholar
25. Pallos, F. M., Gray, R. A., Areklev, D. R., and Brokke, M. E. 1975. Antidotes protect corn from thiocarbamate herbicide injury. J. Agric. Food Chem. 23:821822.Google Scholar
26. Parker, C. and Dean, M. L. 1976. Control of wild rice in rice. Pestic. Sci. 7:403416.Google Scholar
27. Steel, R. G. D. and Torrie, T. H. 1960. Principles and Procedures of Statistics. McGraw Hill, New York. 481 pp.Google Scholar
28. Stephenson, G. R. and Chang, F. Y. 1978. Comparative activity, selectivity, and field applications of herbicide antidotes. Pages 3661 in Casida, J. E. and Pallos, F. M., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.Google Scholar
29. York, A. C. and Slife, F. W. 1979. Antagonism of buthidazole injury to corn by acetanilide herbicides. Abstr. Weed Sci. Soc. Am. p. 24.Google Scholar