Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T06:24:58.909Z Has data issue: false hasContentIssue false

Proteomics: An Emerging Technology for Weed Science Research

Published online by Cambridge University Press:  20 January 2017

Qin Zhang
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
Dean E. Riechers*
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
*
Corresponding author's E-mail: riechers@uiuc.edu

Abstract

Genome sequencing of many model systems, including the human, yeast, Arabidopsis, and rice genomes, has been completed. As a complement to genomic techniques, proteomics has emerged to study the composition, structure, function, and interaction of the expressed proteins or proteome in a given cell, tissue, or organism. During the past several years, tremendous progress has been made with proteomic techniques in human and yeast, but progress has been slower in plants due to several factors. Proteomic techniques have been used in plants, especially in agriculturally important crops and weeds, to understand mechanisms of herbicide tolerance and weed resistance. Proteomic techniques, starting from protein extraction to protein identification, have been developed and advanced for large-scale proteomics studies, but limitations and problems for these techniques still exist for plant proteomics. Further technological improvements are needed to enhance quantitative and comparative large-scale proteomics studies. Applications of these techniques may help weed scientists to understand stress tolerance in crops and investigate weediness traits further. Proteomic techniques have unique strengths but also offer several challenges. Together with transcriptomics and metabolomics, these techniques for analyzing global patterns of gene expression offer new and novel techniques for better understanding biological questions of interest to weed scientists in the future.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agrawal, G. K., Jwa, N. S., Iwahashi, Y., Yonekura, M., Iwahashi, H., and Rakwal, R. 2006. Rejuvenating rice proteomics: facts, challenges, and visions. Proteomics. 6:55495576.CrossRefGoogle ScholarPubMed
Agrawal, G. K. and Rakwal, R. 2006. Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom. Rev. 25:153.Google Scholar
Amme, S., Matros, A., Schlesier, B., and Mock, H. P. 2006. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J. Exp. Bot. 57:15371546.Google Scholar
Baginsky, S., Grossmann, J., and Gruissem, W. 2007. Proteome analysis of chloroplast mRNA processing and degradation. J. Proteome Res. 6:809820.Google Scholar
Barkla, B. J., Vera-Estrella, R., and Pantoja, O. 2007. Enhanced separation of membranes during free flow zonal electrophoresis in plants. Anal. Chem. 79:51815187.CrossRefGoogle ScholarPubMed
Berggren, K., Chernokalskaya, E., Steinberg, T. H., Kemper, C., Lopez, M. F., Diwu, Z., Haugland, R. P., and Patton, W. F. 2000. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis. 21:25092521.Google Scholar
Biron, D. G., Brun, C., Lefevre, T., Lebarbenchon, C., Loxdale, H. D., Chevenet, F., Brizard, J. P., and Thomas, F. 2006. The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics. 6:55775596.Google Scholar
Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Görg, A., Westermeier, R., and Postel, W. 1982. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods. 6:317339.Google Scholar
Bohler, S., Bagard, M., Oufir, M., Planchon, S., Hoffmann, L., Jolivet, Y., Hausman, J. F., Dizengremel, P., and Renaut, J. 2007. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics. 7:15841599.CrossRefGoogle ScholarPubMed
Breci, L. and Haynes, P. A. 2007. Two-dimensional nanoflow liquid chromatography–tandem mass spectrometry of proteins extracted from rice leaves and roots. Methods Mol. Biol. 355:249266.Google Scholar
Carpentier, S. C., Witters, E., Laukens, K., Deckers, P., Swennen, R., and Panis, B. 2005. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics. 5:24972507.Google Scholar
Carter, C., Pan, S., Zouhar, J., Avila, E. L., Girke, T., and Raikhel, N. V. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 16:32853303.Google Scholar
Castro, A. J., Carapito, C., Zorn, N., Magne, C., Leize, E., Van Dorsselaer, A., and Clement, C. 2005. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J. Exp. Bot. 56:27832795.Google Scholar
Cummins, I., Brazier-Hicks, M., Stobiecki, M., Franski, R., and Edwards, R. 2006. Selective disruption of wheat secondary metabolism by herbicide safeners. Phytochemistry. 67:17221730.Google Scholar
Dixon, D. P., Davis, B. G., and Edwards, R. 2002. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana . J. Biol. Chem. 277:3085930869.CrossRefGoogle ScholarPubMed
Dixon, D. P., McEwen, A. G., Lapthorn, A. J., and Edwards, R. 2003. Forced evolution of a herbicide detoxifying glutathione transferase. J. Biol. Chem. 278:2393023935.Google Scholar
Dunkley, T. P., Dupree, P., Watson, R. B., and Lilley, K. S. 2004a. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana . Biochem. Soc. Trans. 32:520523.Google Scholar
Dunkley, T. P., Watson, R., Griffin, J. L., Dupree, P., and Lilley, K. S. 2004b. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics. 3:11281134.CrossRefGoogle ScholarPubMed
Edman, P. 1949. A method for the determination of the amino acid sequence of peptides. Arch. Biochem. Biophys. 22:475483.Google Scholar
Eng, J. K., McCormack, A. L., and Yates, J. R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976989.Google Scholar
Eubel, H., Heazlewood, J. L., and Millar, A. H. 2007. Isolation and subfractionation of plant mitochondria for proteomic analysis. Methods Mol. Biol. 355:4962.Google ScholarPubMed
Froehlich, J. E., Wilkerson, C. G., Ray, W. K., McAndrew, R. S., Osteryoung, K. W., Gage, D. A., and Phinney, B. S. 2003. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2:413425.Google Scholar
Giavalisco, P., Nordhoff, E., Lehrach, H., and Klose, J. 2003. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis. 24:207216.Google Scholar
Glinski, M. and Weckwerth, W. 2006. The roles of mass spectrometry in plant systems biology. Mass Spectrom. Rev. 25:173214.Google Scholar
Görg, A. 1991. Two-dimensional electrophoresis. Nature. 349:545546.Google Scholar
Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21:10371053.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Görg, A., Postel, W., and Gunther, S. 1988. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 9:531546.Google Scholar
Görg, A., Weiss, W., and Dunn, M. J. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 4:36653685.Google Scholar
Graves, P. R. and Haystead, T. A. J. 2002. Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66:3963.Google Scholar
Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994999.Google Scholar
Harris, L. R., Churchward, M. A., Butt, R. H., and Coorssen, J. R. 2007. Assessing detection methods for gel-based proteomic analyses. J. Proteome Res. 6:14181425.Google Scholar
Hjerrild, M. and Gammeltoft, S. 2006. Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. FEBS Lett. 580:47644770.Google Scholar
Holmes, P., Farquharson, R., Hall, P. J., and Rolfe, B. G. 2006. Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula . J. Proteome Res. 5:23092316.Google Scholar
Islam, N., Tsujimoto, H., and Hirano, H. 2003. Wheat proteomics: relationship between fine chromosome deletion and protein expression. Proteomics. 3:307316.Google Scholar
Ito, J., Heazlewood, J. L., and Millar, A. H. 2006. Analysis of the soluble ATP-binding proteome of plant mitochondria identifies new proteins and nucleotide triphosphate interactions within the matrix. J. Proteome Res. 5:34593469.Google Scholar
Jaquinod, M., Villiers, F., Kieffer-Jaquinod, S., Hugouvieux, V., Bruley, C., Garin, J., and Bourguignon, J. 2007. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell. Proteomics. 6:394412.CrossRefGoogle ScholarPubMed
Kelley, K. B., Zhang, Q., Lambert, K. N., and Riechers, D. E. 2006. Evaluation of auxin-responsive genes in soybean for detection of off-target plant growth regulator herbicides. Weed Sci. 54:220229.Google Scholar
Kim, S. T., Cho, K. S., Jang, Y. S., and Kang, K. Y. 2001. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis. 22:21032109.Google Scholar
Komatsu, S. and Yano, H. 2006. Update and challenges on proteomics in rice. Proteomics. 6:40574068.CrossRefGoogle ScholarPubMed
Komatsu, S., Zang, X., and Tanaka, N. 2006. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J. Proteome Res. 5:270276.Google Scholar
Lilley, K. S. and Dupree, P. 2006. Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot. 57:14931499.Google Scholar
Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R. 1999. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17:676682.Google Scholar
Lopez, M. F., Berggren, K., Chernokalskaya, E., Lazarev, A., Robinson, M., and Patton, W. F. 2000. A comparison of silver stain and SYPRO Ruby protein gel stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis. 21:36733683.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Maor, R., Jones, A., Nuhse, T. S., Studholme, D. J., Peck, S. C., and Shirasu, K. 2007. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol. Cell. Proteomics. 6:601610.CrossRefGoogle ScholarPubMed
Natarajan, S., Xu, C. P., Caperna, T. J., and Garrett, W. M. 2005. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal. Biochem. 342:214220.CrossRefGoogle ScholarPubMed
O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:40074021.Google Scholar
Patton, W. F. 2002. Detection technologies in proteome analysis. J. Chromatogr. B. 771:331.Google Scholar
Quadroni, M. and James, P. 1999. Proteomics and automation. Electrophoresis. 20:664677.Google Scholar
Rabilloud, T. 2002. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics. 2:310.Google Scholar
Rakwal, R. and Agrawal, G. K. 2003. Rice proteomics: current status and future perspectives. Electrophoresis. 24:33783389.Google Scholar
Riechers, D. E., Zhang, Q., Xu, F-X., and Vaughn, K. C. 2003. Tissue-specific expression and localization of safener-induced glutathione S-transferase proteins in Triticum tauschii . Planta. 217:831840.Google Scholar
Rossignol, M., Peltier, J. B., Mock, H. P., Matros, A., Maldonado, A. M., and Jorrin, J. V. 2006. Plant proteome analysis: a 2004–2006 update. Proteomics. 6:55295548.Google Scholar
Santoni, V. 2007. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol. Biol. 355:93109.Google Scholar
Smith, A. P., DeRidder, B. P., Guo, W. J., Seeley, E. H., Regnier, F. E., and Goldsbrough, P. B. 2004. Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J. Biol. Chem. 279:2609826104.Google Scholar
Song, J., Braun, G., Bevis, E., and Doncaster, K. 2006. A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-DE and MS analysis. Electrophoresis. 27:31443151.Google Scholar
Stroher, E. and Dietz, K. J. 2006. Concepts and approaches towards understanding the cellular redox proteome. Plant Biol. (Stuttg.) 8:407418.Google Scholar
Sun, B., Ranish, J. A., Utleg, A. G., White, J. T., Yan, X., Lin, B., and Hood, L. 2007. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell. Proteomics. 6:141149.Google Scholar
Teixeira, M. C., Santos, P. M., Fernandes, A. R., and Sa-Correia, I. 2005. A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics. 5:18891901.Google Scholar
Unlu, M., Morgan, M. E., and Minden, J. S. 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 18:20712077.Google Scholar
Valcu, C. M. and Schlink, K. 2006. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics. 6:41664175.Google Scholar
Van den Bergh, G. and Arckens, L. 2004. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr. Opin. Biotechnol. 15:3843.Google Scholar
Van Noorden, G. E., Kerim, T., Goffard, N., Wiblin, R., Pellerone, F. I., Rolfe, B. G., and Mathesius, U. 2007. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti . Plant Physiol. 144:11151131.Google Scholar
Vincent, D., Wheatley, M. D., and Cramer, G. R. 2006. Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis. 27:18531865.Google Scholar
Wang, W., Vignani, R., Scali, M., and Cresti, M. 2006. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis. 27:27822786.Google Scholar
Washburn, M. P., Wolters, D., and Yates, J. R. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242247.Google Scholar
Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L., and Humphery-Smith, I. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16:10901094.Google Scholar
Wuhrer, M., Catalina, M. I., Deelder, A. M., and Hokke, C. H. 2007. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B. 849:115128.Google Scholar
XiJ, , Wang, X., Li, S., Zhou, X., Yue, L., Fan, J., and Hao, D. 2006. Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry. 67:23412348.Google Scholar
Xu, F. X., Lagudah, E. S., Moose, S. P., and Riechers, D. E. 2002. Tandemly duplicated safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organspecific expression in hexaploid wheat. Plant Physiol. 130:362373.Google Scholar
Yajima, W., Hall, J. C., and Kav, N. V. 2004. Proteome-level differences between auxinic herbicide–susceptible and –resistant wild mustard (Sinapis arvensis L.). J. Agric. Food Chem. 52:50635070.Google Scholar
Yao, Y., Yang, Y., and Liu, J. 2006. An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis. 27:45594569.Google Scholar
Yates, J. R. III 1998. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 33:119.Google Scholar
Zhang, Q. and Riechers, D. E. 2004. Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings. Proteomics. 4:20582071.Google Scholar
Zhang, Q., Xu, F., Lambert, K. N., and Riechers, D. E. 2007. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics. 7:12611278.Google Scholar