Published online by Cambridge University Press: 12 June 2017
Production of native grasses following aerial application of 1.12 kg/ha of 2.4.5-T ((2,4,5-trichlorophenoxy)acetic acid), 2,4,5-T + dicamba (3,6-dichloro-o-anisic acid), or 2,4,5-T + picloram (4-amino-3,5,6-trichloropicolinic acid) (1:) to a south Texas mixed-brush (Prosopis-Acacia) community was significantly increased by all herbicide treatments the year of application, by the herbicide combinations during the second year, but only by 2,4,5-T + picloram the third year after treatment. Moisture-use efficiency based on kg/ha native grass produced/cm precipitation was greastest where the herbicide combinations were applied. Defoliation of woody plants in years of above-average rainfall resulted in favorable grass production responses regardless of herbicide(s). However, range improvement over the 3-yr of study was dependent on maintenance of herbicide effectiveness, especially control of underbrush which resulted only where 2,4,5-T + picloram were applied. Consumption of native grass was a direct function of availability in response to brush control as augmented by rainfall. Forb production was reduced by all herbicides the year of treatment and by 2,4,5-T + picloram the year following application, but was not reduced by any treatment during the third growing season.