Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:54:17.678Z Has data issue: false hasContentIssue false

RAPD analysis of cultivated and wild yellow nutsedge (Cyperus esculentus L.)

Published online by Cambridge University Press:  12 June 2017

Paloma Abad
Affiliation:
Departamento Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, 15, 46020 Valencia, Spain
José V. Maroto
Affiliation:
Departamento Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, 15, 46020 Valencia, Spain
Salvador López-Galarza
Affiliation:
Departamento Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, 15, 46020 Valencia, Spain
María J. Vicente
Affiliation:
Departamento Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, 15, 46020 Valencia, Spain
José Alagarda
Affiliation:
Departamento Producción Vegetal, Universidad Politécnica de Valencia, Camino de Vera, 15, 46020 Valencia, Spain

Abstract

Cultivated and weedy clones of yellow nutsedge were analyzed using random amplified polymorphic DNA (RAPD) markers to assess the polymorphism within the species and determine if this approach was suitable for identification of cultivar and wild populations. The RAPD markers unambiguously identified all studied clones. Nei-Li similarities were computed and used in an unweighted pair group method using arithmetic average (UPGMA) cluster analyses. Cultivated and weedy clones were clustered in two groups, but two cultivated clones were more closely related to weedy clones than to cultivated clones. The results showed a high level of genetic variability among the clones tested, particularly among the cultivated ones. Identification of yellow nutsedge cultivars and analysis of genetic diversity within and among weedy populations is possible by using only a small number of primers. In this study, seven selected primers discriminated among the 10 tested clones.

Type
Weed Biology and Ecology
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barret, S.C.H. 1982. Genetic variation in weeds. Pages 7398 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley.Google Scholar
Brown, A.D.H. and Marshall, B. E. 1981. Evolutionary changes accompanying colonization in plants. Pages 351363 in Evolution Today. Proceedings of the 2d International Congress of Systematic Evolutionary Biology. Pittsburgh, PA: Hunt Institute for Botanical Documentation, Carnegie-Mellon University.Google Scholar
Castell, V. 1996. Determinación y Tipificación Agronómica de Clones de Chufa (Cyperus esculentus L.) Cultivados en l'Horta Nord de Valencia. . Universidad Polititécnica, Valencia, Spain. 186 p.Google Scholar
Conejero, V. and Semancick, J. S. 1977. Analysis of the protein in crude extracts by polyacrylamide slab gel electrophoresis. Phytopathology 67: 14241426.Google Scholar
Dellaporta, S. L., Wood, J., and Hicks, J. 1983. Plant DNA minipreparation. Plant Mol. Biol. Rptr. 1: 1921.CrossRefGoogle Scholar
de Vries, F. T. 1991. Chufa (Cyperus esculentus, Cyperaceae): a weedy cultivar or a cultivated weed. Econ. Bot. 45: 2737.Google Scholar
Ellstrand, N. C. and Roose, M. L. 1987. Patterns of genetic diversity in clonal plant species. Am. J. Bot. 74: 123131.CrossRefGoogle Scholar
Freyre, R., Rios, R., Guzman, L., Debouck, D. G., and Gepts, P. 1996. Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ. Bot. 50: 195215.Google Scholar
García-Jiménez, J., Busto, J., Armengol, J., Martínez-Ferrer, G., Sales, R., and García-Morató, M. 1997. La podredumbre negra o ‘alquitranat’: un grave problema de la chufa en Valencia. Agríc. Vergel 183: 144148.Google Scholar
Hamada, K. and Hagimori, M. 1996. RAPD-based method for cultivaridentification of calla lily (Zantedeschia spp.). Sci. Hortic. 65: 215218.Google Scholar
Holt, J. S. 1992. Phenotypic variation in yellow nutsedge. Proc. West. Soc. Weed Sci. 45: 118119.Google Scholar
Holt, J. S. 1994. Genetic variation in life history traits in yellow nutsedge (Cyperus esculentus) from California. Weed Sci. 42: 378384.Google Scholar
Horak, M. J. and Holt, J. S. 1986. Isozyme variability and breeding systems in populations of yellow nutsedge (Cyperus esculentus). Weed Sci. 34: 538543.CrossRefGoogle Scholar
Katzir, N., Portnoy, V., Tzuri, G., Castejón Muñoz, M., and Joel, D. M. 1996. Use of random amplified polymorphic DNA (RAPD) markers in the study of the patasitic weed Orobanche . Theor. Appl. Genet. 93: 367372.Google Scholar
Kükenthal, G. 1936. Cyperaceae-Scirpoideae-Cypereae . Pages 116121 in Engler, A., ed. Das Planzenreich 4. Leipzig: Verlag Wilhelm Engelmann.Google Scholar
Lazaro, A. and Aguinagalde, I. 1996. Phylogenetic relations between the wild taxa of the Brassica oleracea L. group (2n=18) using random amplified polymorphic DNA assay. Sci. Hortic. 65: 219227.Google Scholar
Lyman, J. C. and Ellstrand, N. C. 1984. Clonal diversity in Taraxacum officinale (Compositae), an apomict. Heredity 53: 110.Google Scholar
Negbi, M. 1992. A sweetmeat plant, a perfume plant and their weedy relatives: a chapter in the history of Cyperus esculentus L. and C. rotundus L. Econ. Bot. 46: 6471.Google Scholar
Nei, M. and Li, W. S. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 52695273.CrossRefGoogle ScholarPubMed
Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1995. DNA-based marker systems to determine genetic diversity of weedy species and their application to biocontrol. Weed Sci. 43: 505513.CrossRefGoogle Scholar
Pammi, S., Schertz, K., Xu, G., Hart, G., and Mullet, J. E. 1994. Randomamplified-polymorphic DNA markers in sorghum. Theor. Appl. Genet. 89: 8088.Google Scholar
Pascual, B., Alagarda, J., López-Galarza, S., and Maroto, J. V. 1989. Cultivation of chufa crop (Cyperus esculentus L.) in Spain. Proc. 4th Symp. Weed Problems Mediterranean Climates 11: 144151.Google Scholar
Pascual, B., Castell-Zeising, V., Bono, M. S., and Maroto, J. V. 1993. Estudios de tipificación y selección de líneas clónales cultivadas de Cyperus esculentus L. Actas II Congr. Ibér. Cient. Hortic. 10: 10151020.Google Scholar
Pascual, B., Maroto, J. V., López-Galarza, S., Alagarda, J., and Castell, V. 1997. El Cultivo de la Chufa (Cyperus esculentus L. var. Sativus Boeck.). Valencia, Spain: Generalitat Valenciana, Conselleria de Agricultura, Pesca y Alimentación. 95 p.Google Scholar
ter Borg, S. and Schippers, P. 1992. Distribution of varieties of Cyperus esculentus (yellow nutsedge) and their possible migration in Europe. IIème Coll. Int. sur la Biol. des mauvaises Herbes 1: 417425.Google Scholar
Torres, A. M., Millán, T., and Cubero, J. I. 1993. Identifying rose cultivars using random amplified polymorphic DNA markers. HortScience 28: 333334.CrossRefGoogle Scholar
Williams, J.G.K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 65316535.CrossRefGoogle ScholarPubMed
Wills, G. D. 1987. Description of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1: 29.CrossRefGoogle Scholar