Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T13:27:16.407Z Has data issue: false hasContentIssue false

Recovery of Pitted Morningglory (Ipomoea lacunosa) and Ivyleaf Morningglory (Ipomoea hederacea) Following Applications of Acifluorfen, Fomesafen, and Lactofen

Published online by Cambridge University Press:  12 June 2017

Jeffery M. Higgins
Affiliation:
Agron. and Soils Dep., and Instr., Exp. Statistics Unit, Clemson Univ., Clemson, SC 29634
Ted Whitwell
Affiliation:
Agron. and Soils Dep., and Instr., Exp. Statistics Unit, Clemson Univ., Clemson, SC 29634
Edward C. Murdock
Affiliation:
Agron. and Soils Dep., and Instr., Exp. Statistics Unit, Clemson Univ., Clemson, SC 29634
Joe E. Toler
Affiliation:
Agron. and Soils Dep., and Instr., Exp. Statistics Unit, Clemson Univ., Clemson, SC 29634

Abstract

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max (L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosa L. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea (L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baldwin, F. L. and Frans, R. E. 1972. Soybean and weed response to dinoseb and chloroxuron applied topically. Weed Sci. 20:511514.CrossRefGoogle Scholar
2. Barker, M. A., Thompson, L. Jr., and Godley, F. M. 1984. Control of annual morningglories (Ipomoea spp.) in soybeans (Glycine max). Weed Sci. 32:813818.Google Scholar
3. Barrentine, W. L. 1974. Common cocklebur competition in soybeans. Weed Sci. 22:600603.Google Scholar
4. Burnside, O. C. and Moomaw, R. S. 1977. Control of weeds in narrow-row soybeans. Agron. J. 69:793796.CrossRefGoogle Scholar
5. Cordes, R. C. and Bauman, T. T. 1984. Field competition between ivyleaf morningglory (Ipomoea hederacea) and soybeans (Glycine max). Weed Sci. 32:364370.Google Scholar
6. Crowley, R. H. and Buchanan, G. A. 1978. Competition of four morningglory (Ipomoea spp.) species with cotton (Gossypium hirsutum). Weed Sci. 26:484487.CrossRefGoogle Scholar
7. Crowley, R. H., Teem, D. H., Buchanan, G. A., and Hoveland, C. S. 1979. Responses of Ipomoea spp. and Cassia spp. to preemergence applied herbicides. Weed Sci. 27:531535.Google Scholar
8. Fehr, W. R., Caviness, C. E., Burmood, D. T., and Pennington, J. S. 1971. Stage of development descriptions for soybeans [Glycine max (L.) Merrill]. Crop Sci. 11:929931.Google Scholar
9. Higgins, J. M., Whitwell, T., Corbin, F. T., Carter, G. E. Jr., Hill, H. S. Jr. 1988. Absorption, translocation, and metabolism of acifluorfen and lactofen in pitted morningglory (Ipomoea lacunosa) and ivyleaf morningglory (Ipomoea hederacea). Weed Sci. 36:141145.Google Scholar
10. Hook, B. J. and Glenn, S. 1984. Mefluidide and acifluorfen interactions on ivyleaf morningglory (Ipomoea hederacea), velvetleaf (Abutilon theophrasti), and common cocklebur (Xanthium pensylvanicum). Weed Sci. 32:198201.CrossRefGoogle Scholar
11. Houston, W. A. 1970. The ten worst weeds of field crops – morningglory. Crops Soils Mag. 23:910.Google Scholar
12. Kapusta, G., Jackson, L. A., and Mason, D. S. 1986. Yield response of weed-free soybeans (Glycine max) to injury from postemergence broadleaf herbicides. Weed Sci. 34:304307.CrossRefGoogle Scholar
13. Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods of application. Weed Sci. 30:520526.Google Scholar
14. Mathis, W. D. 1980. Broad spectrum weed control in soybeans with acifluorfen -sodium. Proc. South. Weed Sci. Soc. 33:51.Google Scholar
15. Murphy, T. R. and Gossett, B. J. 1981. Influence of shading by soybeans (Glycine max) on weed suppression. Weed Sci. 29:610615.CrossRefGoogle Scholar
16. Oliver, L. R., Frans, R. E., and Talbert, R. E. 1976. Field competition between tall morningglory and soybeans. I. Growth analysis. Weed Sci. 24:482488.Google Scholar
17. Rose, R. P. and Riabov, J. 1985. Today's herbicide: Reflex 2LC herbicide – A new selective postemergence broadleaf weed herbicide for soybeans. Weeds Today 16:5.Google Scholar
18. Scott, H. D. and Oliver, L. R. 1976. Field competition between tall morningglory and soybean. II. Development and distribution of root systems. Weed Sci. 24:454460.Google Scholar
19. Taylor, F. R. 1985. Today's herbicide: Cobra postemergence herbicide shows promise for producers and PPG. Weeds Today 16(4):3.Google Scholar
20. Teem, D. H., Hoveland, D. C., and Buchanan, G. A. 1974. Primary root elongation of three weed species. Weed Sci. 22:4750.CrossRefGoogle Scholar
21. Wilson, H. P. and Cole, R. H. 1966. Morningglory competition in soybeans. Weeds 14:4951.Google Scholar