Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T22:34:37.689Z Has data issue: false hasContentIssue false

Remote Sensing of Broom Snakeweed (Gutierrezia sarothrae) and Spiny Aster (Aster spinosus)

Published online by Cambridge University Press:  12 June 2017

James H. Everitt
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596
Russ D. Pettit
Affiliation:
Texas Tech. Univ., Dep. Range and Wildlife Manage., Lubbock, TX 79409
Mario A. Alaniz
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., P.O. Box 267, Weslaco, TX 78596

Abstract

Field spectroradiometric plant canopy measurements showed that broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby # GUESA] and spiny aster (Aster spinosus Benth. # ASTSN) had lower near-infrared (0.85-μm) reflectance than did other associated rangeland shrubs and herbaceous vegetation. The low near-infrared reflectances of both species were attributed to their erectophile (erect leaf/stem) canopy structures. These low near-infrared reflectance values caused broom snakeweed to have a dark-brown to black image on color-infrared aerial photos (0.50- to 0.90-μm), whereas spiny aster had a dark reddish-brown to black image. Other rangeland plant species had light-brown, red, or magenta images. Computer-based image analyses of color-infrared film positive transparencies showed that broom snakeweed and spiny aster infestations could be quantitatively differentiated from associated rangeland species. Computer analyses can permit “percent land area infested” estimates of broom snakeweed and spiny aster infestations on rangelands.

Type
Special Topics
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Correll, D. S. and Johnston, M. C. 1970. Manual of the Vascular Plants of Texas. Texas Res. Foundation, Renner, TX. 1881 pp.Google Scholar
2. Dwyer, D. D. 1958. Competition between forbs and grasses. J. Range Manage. 11:115118.Google Scholar
3. Dwyer, D. D. 1967. Fertilization and burning of blue grama grass. J. Anim. Sci. 26:934.Google Scholar
4. Elifrits, C. D., Borney, T. W., Barr, D. J., and Johannsen, C. J. 1977. Mapping land covers from satellite images: a basic low cost approach. Pages 106122 in Proc. Fall Meeting Am. Soc. Photogrammetry. Am. Soc. Photogrammetry, Falls Church, VA.Google Scholar
5. Everitt, J. H. 1985. Using aerial photography for detecting blackbrush (Acacia rigidula) on south Texas rangelands. J. Range Manage. 38:228231.Google Scholar
6. Everitt, J. H., Ingle, S. J., Gausman, H. W., and Mayeux, H. S. Jr. 1984. Detection of false broomweed (Ericameria austrotexana) by aerial photography. Weed Sci. 32:621624.CrossRefGoogle Scholar
7. Gesink, R. W., Alley, H. P., and Lee, G. A. 1973. Vegetative response to chemical control of broom snakeweed on a blue grama range. J. Range Manage. 12:139143.Google Scholar
8. Hardy, E. E. and Hunt, L. E. 1975. Testing low cost interpretation systems for updating land use inventories. Pages 393400 in Proc. 10th Intern. Symp. Remote Sens. Environ.Google Scholar
9. Hopkins, H. F., Albertson, F. W., and Riegel, A. 1948. Some effects of burning upon a prairie in West-Central Kansas. Trans. Kans. Acad. Sci. 51:131141.Google Scholar
10. Jameson, D. A. 1966. Competition in a blue grama-broom snakeweed – Actinea community and responses to selective herbicides. J. Range Manage. 19:121124.Google Scholar
11. Jones, F. B. 1975. Flora of the Texas Coastal Bend. Mission Press, Corpus Christi, TX. 262 pp.Google Scholar
12. Kingsbury, J. M. 1964. Poisonous Plants of the United States and Canada. Prentice-Hall, Inc., New York. 626 pp.Google Scholar
13. Lane, M. A. 1985. Taxonomy of Gutierrezia (Compositae: Astereae) in North America. Syst. Bot. 10:928.Google Scholar
14. Leamer, R. W., Myers, V. I., and Silva, L. F. 1973. A spectroradiometer for field use. Rev. Sci. Instrum. 44:611614.CrossRefGoogle Scholar
15. Mayeux, H. S. Jr. 1983. Effects of soil texture and seed placement on emergence of four subshrubs. Weed Sci. 31:380384.Google Scholar
16. Menges, R. M., Nixon, P. R., and Richardson, A. J. 1985. Light reflectance and remote sensing of weeds in agronomic and horticultural crops. Weed Sci. 33:569581.Google Scholar
17. Myers, V. I. and Allen, W. A. 1968. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture. Appl. Optics 7:18181838.Google Scholar
18. Myers, V. I., Bauer, M. E., Gausman, H. W., Hart, W. G., Heilman, J. L., MacDonald, R. B., Park, A. B., Ryerson, R. A., Schmugge, T. J., and Westin, F. C. 1983. Remote sensing applications in agriculture. Pages 21112228 in Colwell, Robert N., ed. Manual of Remote Sensing, Am. Soc. Photogrammetry, Falls Church, VA.Google Scholar
19. Schmutz, E. M., Cable, D. R., and Warwick, J. J. 1959. Effects of shrub removal on the vegetation of a semidesert grass-shrub range. J. Range Manage. 12:3437.Google Scholar
20. Schmutz, E. M. and Little, D. E. 1970. Effects of 2,4,5-T and picloram on broom snakeweed in Arizona. J. Range Manage. 23:354357.Google Scholar
21. Solbrig, O. T. 1960. Cytotaxonomic and evolutionary studies in the North American species of Gutierrezia (Compositae). Contrib. Gray Herb. Harvard Univ. 188:163.Google Scholar
22. Steel, R.G.D. and Torrie, J. H. 1980. Principles and Procedures of Statistics. McGraw-Hill Book Co., New York. 481 pp.Google Scholar
23. Ueckert, D. N. 1979. Broom snakeweed: Effect of shortgrass forage production and soil water depletion. J. Range Manage. 32:216220.Google Scholar
24. Vine, R. A. 1960. Trees, Shrubs, and Woody Vines of the Southwest. Univ. of Texas Press, Austin, TX. 1104 pp.Google Scholar
25. Wiegand, C. L., Gausman, H. W., Cuellar, J. A., Gerbermann, A. H., and Richardson, A. J. 1974. Vegetative density deduced from ERTS-1-MSS response. Proc. 3d Earth Resources Technological Satellite-1 Symp. Vol. 1, Section A, NASA SP-351. U.S. Gov. Printing Office, Washington, DC. Pages 93116.Google Scholar