Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:14:02.921Z Has data issue: false hasContentIssue false

Smallseed Dodder (Cuscuta planiflora) Phototropism toward Far-red When in White Light

Published online by Cambridge University Press:  12 June 2017

Gregory L. Orr
Affiliation:
Dep. Plant Pathol. & Weed Sci., Colorado State Univ., Fort Collins, CO 80523
Mustapha A. Haidar
Affiliation:
Dep. Crop Prod. & Protect., American Univ., Beirut, Lebanon
Deborah A. Orr
Affiliation:
Tavelli Elementary, Poudre R-1 School District, Fort Collins, CO, 80524

Abstract

White light-grown seedlings of smallseed dodder were (a) provided with unilateral far-red (700 to 800 nm) at photon irradiances ranging from 20 to 110 μmol m−2 s−1 against a background of cool white light (400 to 700 nm) from above at 77 μmol m−2 s−1, or (b) transferred to darkness and provided with unilateral white light at 20 μmol m−2 s−1, unilateral blue light (400 to 500 nm) at 10 μmol m−2 s−1, unilateral red light (600 to 700 nm) at 10 μmol m−2 s−1, unilateral far-red at 50 μmol m−2 s−1, or (c) in experiments utilizing bilateral irradiations, provided with unilateral far-red perpendicular to unilateral white light. Positive phototropic curvature was induced by unilateral white light and by unilateral blue light in otherwise darkness and by unilateral far-red in a background of cool white light. Seedling vines were also phototropic toward unilateral far-red when provided with unilateral white light perpendicular to unilateral far-red. Phototropism to unilateral white light was inhibited in seedlings treated with 200 μM norflurazon and 50 mM potassium iodide. Norflurazon- and potassium iodide-treated seedlings remained phototropic toward unilateral far-red when provided with unilateral white light perpendicular to unilateral far-red. Seedling vines were not phototropic to unilateral red or to unilateral far-red in otherwise darkness, and seedlings in cool white light were neither skototropic (i.e., tropic toward unilateral darkness) nor tropic to or from infra-red (radiation with wavelengths greater than 900 nm). Phototropism toward regions of lowered red:far-red may aid smallseed dodder in chlorophyllous host location and attachment.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ballaré, C. L., Sànchez, R. A., Scopel, A. L., Casal, J. J., and Ghersa, C. M. 1987. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 10: 551557.CrossRefGoogle Scholar
2. Ballaré, C. L., Scopel, A. L., Radosevich, S. R., and Kendrick, R. E. 1992. Phytochrome-mediated phototropism in de-etiolated seedlings. Plant Physiol. 100: 170177.CrossRefGoogle ScholarPubMed
3. Ballaré, C. L., Scopel, A. L., and Sànchez, R. A. 1990. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247: 329332.CrossRefGoogle ScholarPubMed
4. Bartels, P. G. and McCullough, C. 1972. A new inhibitor of carotenoid biosynthesis in higher plants: 4-chloro-5-(dimethylamino)-2-α,α,α-trifluoro-m-tolyl)-3-(2H)-pyridazinone (San 6706). Biochem. Biophys. Res. Commun. 48: 1622.CrossRefGoogle Scholar
5. Brown, A. H. 1993. Circumnutations: From Darwin to Space Flights. Update on Plant Development. Plant Physiol. 101: 345348.Google ScholarPubMed
6. Bünning, E. and Kautt, R. 1956. Über den Chemotropismus der Keimlinge von Cuscuta europaea . Biol. Zbl. 75: 356359.Google Scholar
7. Ciferri, O. and Poma, G. 1963. Fixation of carbon dioxide by Cuscuta epithymum . Life Sciences 3: 158162.Google Scholar
8. Darwin, C. R. 1888. Pages 98103 in The Movements and Habits of Climbing Plants, 2nd Revised Edition. Appleton and Company, New York.CrossRefGoogle Scholar
9. Darwin, C. R. and Darwin, F. 1896. Pages 207 and 432433 in The Power of Movement in Plants, Authorized Edition. Appleton and Company, New York.CrossRefGoogle Scholar
10. Dawson, J. H., Musselman, L. J., Wolsinkel, P., and Dörr, I. 1994. Biology and control of Cuscuta . Rev. Weed Sci. 6: 265317.Google Scholar
11. Devine, M., Duke, S. O., and Fedtke, C. 1993. Pages 141176 in Physiology of Herbicide Action. P T R Prentice Hall, Englewood Cliffs, NJ.Google Scholar
12. Firn, R. D. 1994. Phototropism. Pages 659682 in Kendrick, R. and Kronenberg, G., eds. Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
13. Fritsché, E., Bouillenne-Warland, M., and Bouillenne, R. 1958. Quelques observations sur la biologie de Cuscuta europaea L. Acad. Roy. Belg. Bull. Cl. Sci. 44: 163187.Google Scholar
14. Hart, J. W. 1990. Pages 90138 in Plant Tropisms and Other Growth Movements. Unwin Hyman, Ltd., London.Google Scholar
15. Holmes, M. G. 1984. Light sources. Pages 4380 in Smith, H. and Holmes, M. G., eds. Techniques in Photomorphogenesis. Academic Press, London.Google Scholar
16. Holmes, M. G. and Smith, H. 1977. The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol. 25: 539545.Google Scholar
17. Iino, M. 1990. Phototropism: mechanisms and ecological significance. Plant Cell Environ. 13: 633650.CrossRefGoogle Scholar
18. Jabben, M. and Deitzer, G. F. 1979. Effects of the herbicide San 9789 on photomorphogenic responses. Plant Physiol. 63: 481485.CrossRefGoogle ScholarPubMed
19. Kelly, C. K. 1990. Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa . Ecol. 7: 19161925.CrossRefGoogle Scholar
20. Lane, H. C. and Kasperbauer, M. J. 1965. Photomorphogenic responses of dodder seedlings. Plant Physiol. 40: 109116.CrossRefGoogle ScholarPubMed
21. Lyshede, O. B. 1985. Morphological and anatomical features of Cuscuta pedicellata and C. campestris . Nordic J. Bot. 5: 6577.CrossRefGoogle Scholar
22. MacLeod, D. G. 1961. Photosynthesis in Cuscuta . Experientia 17: 542543.CrossRefGoogle ScholarPubMed
23. Mancinelli, A. L. 1994. The physiology of phytochrome action. Pages 211269 in Kendrick, R. and Kronenberg, G., eds. Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
24. Mancinelli, A. L., Hobert, O., and Nikas, G. 1992. In vivo phytochrome-mediated perception of reflected light signals. Photochem. Photobiol. 56: 585591.CrossRefGoogle ScholarPubMed
25. Mancinelli, A. L. and Rabino, I. 1978. The “high irradiance responses” of plant photomorphogenesis. Bot. Rev. 44: 129180.CrossRefGoogle Scholar
26. Schmidt, W., Hart, J., Filner, P., and Poff, K. L. 1977. Specific inhibition of phototropism in corn seedlings. Plant Physiol. 60: 736738.Google Scholar
27. Schönbohm, E. and Schönbohm, E. 1984. Multiple effects of the flavin quencher potassium iodide on light- and dark-processes in the green alga Mougeotia . Pages 137145 in Senger, H., ed. Blue Light Effects in Biological Systems. Springer-Verlag, Berlin.Google Scholar
28. Smith, H. 1982. Light quality, photoperception and plant strategy. Ann. Rev. Plant Physiol. 33: 481518.CrossRefGoogle Scholar
29. Smith, H. 1994. Sensing the light environment: the functions of the phytochrome family. Pages 377416 in Kendrick, R. and Kronenberg, G., eds. Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
30. Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 289315.CrossRefGoogle Scholar
31. Smith, H., Casal, J. J., and Jackson, G. M., 1990. Reflection signals and the perception by phytochrome of the proximity of neighbouring vegetation. Plant Cell Environ. 13: 7378.Google Scholar
32. Song, P. S. and Moore, T. A. 1968. Mechanism of the photodephosphorylation of menadiol diphosphate. A model for bioquantum conversion. J. Am. Chem. Soc. 90: 65076514.CrossRefGoogle Scholar
33. Stewart, G.R. and Press, M. C. 1990. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 127151.CrossRefGoogle Scholar
34. Strong, Jr., and, D. R. Ray, T. S. Jr. 1975. Host tree location behavior of a tropical vine (Monstera gigantea) by skototropism. Science 190: 804806.Google Scholar
35. VanDerWoude, W. J. 1985. A dimeric mechanism for the action of phytochrome: evidence from photothermal interactions in lettuce seed germination. Photochem. Photobiol. 42: 655661.Google Scholar
36. VanDerWoude, W. J. 1987. Application of the dimeric model of phytochrome action to high irradiance reactions. Pages 249258 in Furaya, M., ed. Phytochrome and Photoregulation in Plants, Academic Press, Tokyo.Google Scholar
37. Woitzik, F. and Mohr, H. 1988. Control of hypocotyl phototropism by phytochrome in a dicotyledonous seedling (Sesamum indicum L.). Plant Cell Environ. 11: 653661.CrossRefGoogle Scholar