Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T22:14:48.641Z Has data issue: false hasContentIssue false

Target site–based penoxsulam resistance in barnyardgrass (Echinochloa crus-galli) from China

Published online by Cambridge University Press:  18 March 2019

Jiapeng Fang
Affiliation:
Ph.D Candidate, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China; State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, People’s Republic of China
Tingting Liu
Affiliation:
Graduate Student, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China; State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, People’s Republic of China
Yuhua Zhang
Affiliation:
Ph.D Candidate, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China; State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, People’s Republic of China
Jun Li
Affiliation:
Associate Professor, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China; State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, People’s Republic of China
Liyao Dong*
Affiliation:
Professor, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China; State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, People’s Republic of China
*
Author for correspondence: Liyao Dong, Email: dly@njau.edu.cn

Abstract

Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is acknowledged to be the most troublesome weed in rice fields in Anhui and Jiangsu provinces of China. It cannot be effectively controlled using certain acetolactate synthase (ALS)-inhibiting herbicides, including penoxsulam. Echinochloa crus-galli samples with suspected resistance to penoxsulam were collected to identify the target site–based mechanism underlying this resistance. Populations AXXZ-2 and JNRG-2 showed 33- and 7.3-fold resistance to penoxsulam, respectively, compared with the susceptible JLGY-3 population. Cross-resistance to other ALS inhibitors was reported in AXXZ-2 but not in JNRG-2, and occasionally showed higher sensitivity than JLGY-3. In vitro ALS activity assays revealed that penoxsulam concentrations required to inhibit 50% of ALS activity were 11 and 5.2 times greater in AXXZ-2 and JNRG-2, respectively, than in JLGY-3. DNA and predicted amino acid sequence analyses of ALS revealed Ala-205-Val and Ala-122-Gly substitutions in AXXZ-2 and JNRG-2, respectively. Our results indicate that these substitutions in ALS are at least partially responsible for resistance to penoxsulam.

Type
Research Article
Copyright
© Weed Science Society of America, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altop, EK, Mennan, H, Streibig, JC, Budak, U, Ritz, C (2014) Detecting ALS and ACCase herbicide tolerant accession of Echinochloa oryzoides (Ard.) Fritsch in rice (Oryza sativa L.) fields. Crop Prot 65:202206CrossRefGoogle Scholar
Ashigh, J, Tardif, FJ (2017) An Ala205Val substitution in acetohydroxyacid synthase of eastern black nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedback inhibition. Weed Sci 55:558565CrossRefGoogle Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528CrossRefGoogle Scholar
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248254CrossRefGoogle ScholarPubMed
Brosnan, JT, Vargas, JJ, Breeden, GK, Grier, L, Aponte, RA, Tresch, S, Laforest, M (2016) A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. Planta 243:149159CrossRefGoogle ScholarPubMed
Chen, GQ, Wang, Q, Yao, ZW, Zhu, LF, Dong, LY (2016) Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biol Manag 16:1623CrossRefGoogle Scholar
Duggleby, RG, McCourt, JA, Guddat, LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309324CrossRefGoogle ScholarPubMed
Duggleby, RG, Pang, SS, Yu, HQ, Guddat, LW (2003) Systematic characterization of mutations in yeast acetohydroxyacid synthase—interpretation of herbicide-resistance data. Eur J Biochem 270:28952904CrossRefGoogle ScholarPubMed
Feng, Y, Gao, Y, Zhang, Y, Dong, L, Li, J (2017) Mechanisms of resistance to pyroxsulam and ACCase inhibitors in Japanese foxtail (Alopecurus japonicus). Weed Sci 64:695704CrossRefGoogle Scholar
Han, H, Yu, Q, Purba, E, Li, M, Walsh, M, Friesen, S, Powles, SB (2012) A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag Sci 68:11641170CrossRefGoogle ScholarPubMed
Iwakami, S, Hashimoto, M, Matsushima, K, Watanabe, H, Hamamura, K, Uchino, A (2015) Multiple-herbicide resistance in Echinochloa crus-galli var. formosensis, an allohexaploid weed species, in dry-seeded rice. Pestic Biochem Physiol 119:18CrossRefGoogle ScholarPubMed
Iwakami, S, Shimono, Y, Manabe, Y, Endo, M, Shibaike, H, Uchino, A, Tominaga, T (2017) Copy number variation in acetolactate synthase genes of thifensulfuron-methyl resistant Alopecurus aequalis (shortawn foxtail) accessions in Japan. Front Plant Sci 8:254CrossRefGoogle Scholar
Iwakami, S, Uchino, A, Watanabe, H, Yamasue, Y, Inamura, T (2012) Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Manag Sci 68:10981106CrossRefGoogle ScholarPubMed
Kaloumenos, NS, Chatzilazaridou, SL, Mylona, PV, Polidoros, AN, Eleftherohorinos, IG (2013) Target-site mutation associated with cross-resistance to ALS-inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing.). Pest Manag Sci 69:865873CrossRefGoogle Scholar
Krysiak, M, Gawroński, S, Adamczewski, K, Kierzek, R (2011) ALS gene mutations in Apera spica-venti confer broad-range resistance to herbicides. J Plant Prot Res 51:261267CrossRefGoogle Scholar
Le, DT, Yoon, MY, Kim, YT, Choi, JD (2005) Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. Biochim Biophys Acta 1749:103112CrossRefGoogle ScholarPubMed
Matzenbacher, FO, Bortoly, ED, Kalsing, A, Merotto, A (2015) Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. J Agric Sci 153:10441058CrossRefGoogle Scholar
Matzrafi, M, Lazar, TW, Sibony, M, Rubin, B (2015) Conyza species: distribution and evolution of multiple target-site herbicide resistances. Planta 242:259267CrossRefGoogle ScholarPubMed
McNaughton, KE, Letarte, J, Lee, EA, Tardif, FJ (2005) Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci 53:1722CrossRefGoogle Scholar
Ni, H, Moody, K, Robles, RP, Paller, EC Jr, Lales, JS, Cosico, WC (1996) Effect of nitrogen rate on competition of two rice cultivars against Echinochloa crus-galli. Philippine J Weed Sci 24:5362Google Scholar
Norsworthy, JK, Wilson, MJ, Scott, RC, Gbur, EE (2014) Herbicidal activity on acetolactate synthase-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas, USA. Weed Biol Manag 14:5058CrossRefGoogle Scholar
Panozzo, S, Scarabel, L, Rosan, V, Sattin, M (2017) A new Ala-122-Asn amino acid change confers decreased fitness to ALS-resistant Echinochloa crus-galli. Front Plant Sci 8:13CrossRefGoogle ScholarPubMed
Panozzo, S, Scarabel, L, Tranel, PJ, Sattin, M (2013) Target-site resistance to ALS inhibitors in the polyploid species Echinochloa crus-galli. Pestic Biochem Physiol 105:93101CrossRefGoogle Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347CrossRefGoogle ScholarPubMed
Ray, TB (1984) Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol 75:827831CrossRefGoogle ScholarPubMed
Riar, DS, Norsworthy, JK, Srivastava, V, Nandula, V, Bond, JA, Scott, RC (2013) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61:278289CrossRefGoogle Scholar
Song, JS, Lim, SH, Yook, MJ, Kim, JW, Kim, DS (2017) Cross-resistance of Echinochloa species to acetolactate synthase inhibitor herbicides. Weed Biol Manag 17:91102CrossRefGoogle Scholar
Tranel, PJ, Wright, TR, Heap, IM (2018) Mutations in herbicide-resistant weeds to ALS inhibitors. www.weedscience.com. Accessed: March 12, 2018Google Scholar
Xu, HL, Li, J, Zhang, D, Cheng, Y, Jiang, Y, Dong, LY (2014) Mutations at codon position 1999 of acetyl-CoA carboxylase confer resistance to ACCase-inhibiting herbicides in Japanese foxtail (Alopecurus japonicus). Pest Manag Sci 70:18941901CrossRefGoogle Scholar
Yu, Q, Ahmad-Hamdani, MS, Han, H, Christoffers, MJ, Powles, SB (2013) Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity 110:220231CrossRefGoogle Scholar
Yu, Q, Friesen, LJS, Zhang, XQ, Powles, SB (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic Biochem Physiol 78:2130CrossRefGoogle Scholar
Yu, Q, Powles, SB (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci 70:13401350CrossRefGoogle ScholarPubMed
Supplementary material: File

Fang et al. supplementary material

Fang et al. supplementary material 1

Download Fang et al. supplementary material(File)
File 14.5 KB