Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:40:02.106Z Has data issue: false hasContentIssue false

Uptake, translocation, and metabolism of sulfentrazone in peanut, prickly sida (Sida spinosa), and pitted morningglory (Ipomoea lacunosa)

Published online by Cambridge University Press:  20 January 2017

Walter E. Thomas
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Shawn C. Troxler
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
W. David Smith
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Loren R. Fisher
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620

Abstract

Studies were conducted to evaluate uptake, translocation, and metabolism of root-absorbed 14C-sulfentrazone in peanut, prickly sida, and pitted morningglory. Peanut absorbed more than five and three times greater 14C-sulfentrazone than pitted morningglory and prickly sida, respectively. All plant species translocated appreciable amounts (≥ 39%) of radioactivity to the leaves. The three plant species had some capacity to metabolize 14C-sulfentrazone. At 3 h after treatment, 7, 29, and 71% of the radioactivity in the shoots of peanut, prickly sida, and pitted morningglory, respectively, was sulfentrazone. Sulfentrazone levels in the shoots at 3 and 6 h after treatment correspond to reported tolerance levels, with peanut being the most tolerant of the three species, whereas prickly sida and pitted morningglory are moderately tolerant and completely susceptible to sulfentrazone, respectively. Levels of metabolites varied among species, plant part, and harvest timing. On the basis of these data, tolerance in peanut is largely due to its ability to rapidly metabolize sulfentrazone.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA 362622 in cotton, peanut, and selected weeds. Weed Sci 50:293298.Google Scholar
Bailey, W. A., Hatzios, K. K., Bradley, K. W., and Wilson, H. P. 2003. Absorption, translocation, and metabolism of sulfentrazone in potato and selected weed species. Weed Sci 51:3236.Google Scholar
Collins, K. B., McNiel, R. E., and Weston, L. A. 2001. Evaluation of sulfentrazone for weed control and phytotoxicity in field-grown landscape plants. J. Environ. Hort 19:189194.Google Scholar
Dayan, F. E., Armstrong, B. M., and Weete, J. D. 1998. Inhibitory activity of sulfentrazone and its metabolic derivatives on soybean (Glycine max) protoporphyrinogen oxidase. J. Argic. Food Chem 46:20242029.Google Scholar
Dayan, F. E. and Duke, S. O. 1997. Phytotoxicity of protoporphyrinogen oxidase inhibitors: phenomenology, mode of action and mechanisms of resistance. Pages 1135 in Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Washington, DC: IOS.Google Scholar
Dayan, F. E., Duke, S. O., Reddy, K. N., Hamper, B. C., and Leschinsky, K. L. 1997a. Effects of isoxazole herbicides onprotoporphyrinogen oxidase and porphyrin physiology. J. Agric. Food Chem 45:967975.Google Scholar
Dayan, F. E., Weete, J. D., Duke, S. O., and Hancock, H. G. 1997b. Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci 45:634641.Google Scholar
Dayan, F. E., Weete, J. D., and Hancock, H. G. 1996. Physiological basis for differential sensitivity to sulfentrazone by sicklepod (Senna obtusifolia) and coffee senna (Cassia occidentalis). Weed Sci 44:1217.Google Scholar
Duke, S. O., Lydon, J. L., Beccerril, J. M., Sherman, T. D., Lehnen, L. P., and Mausumoto, H. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 39:465473.Google Scholar
Finckh, B. F. and Kunert, K. J. 1985. Vitamin-C and vitamin-E: an antioxidative system against induced lipid peroxidation in higher plants. J. Agric. Food Chem 33:574577.Google Scholar
Fisher, L. R. and Priest, J. A. 2003. Weed management. Pages 7189 in Flue-Cured Tobacco Information. Raleigh, NC: North Carolina Cooperative Extension Service AG-187.Google Scholar
Fisher, L. R., Wilcut, J. W., Smith, W. D., and Price, A. J. 2000. Physiological behavior of sulfentrazone and clomazone in flue-cured tobacco (Nicotiana tabacum L). CORESTA. P. 81.Google Scholar
Grey, T. L., Bridges, D. C., and Brecke, B. J. 2000. Response of seven peanut (Arachis hypogaea) cultivars to sulfentrazone. Weed Technol 14:5156.Google Scholar
Hulting, A. G., Wax, L. M., Nelson, R. L., and Simmons, F. W. 2001. Soybean (Glycine max (L.) Merr.) cultivar tolerance to sulfentrazone. Crop Prot 20:679683.Google Scholar
Jordan, D. L. 2002. Peanut production practices. Pages 912 in Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service AG-331.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1998. Sulfentrazone for weed control in soybean (Glycine max). Weed Technol 12:684689.Google Scholar
Li, Z., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1999. Use of seedling growth parameters to classify soybean (Glycine max) cultivar sensitivity to sulfentrazone. Weed Technol 13:530535.Google Scholar
Li, Z., Wehtje, G. R., and Walker, R. H. 2000. Physiological basis for the differential tolerance of Glycine max to sulfentrazone during seed germination. Weed Sci 48:281285.Google Scholar
Liebl, R. A. and Norman, M. A. 1991. Mechanism of clomazone selectivity in corn (Zea mays), soybean (Glycine max), smooth pigweed (Amaranthus hybridus), and velvetleaf (Abutilon theophrasti). Weed Sci 39:329332.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J 75:153155.Google Scholar
Niekamp, J. W. and Johnson, W. G. 2001. Weed management with sulfentrazone and flumioxazin in no-tillage soyabean (Glycine max). Crop Prot 20:215220.Google Scholar
Price, A. J., Wilcut, J. W., and Cranmer, J. R. 2004. Physiological behavior of root-absorbed flumioxazin in peanut, ivyleaf morningglory, and sicklepod. Weed Sci 52:718724.Google Scholar
Scalla, R., Matringe, M., Camadro, J. M., and Labbe, P. 1990. Recent advances in the mode of action of diphenyl ether and related herbicides. Z. Naturforsch 45:503511.Google Scholar
Swantek, J. M., Sneller, C. H., and Oliver, L. R. 1998. Evaluation of soybean injury from sulfentrazone and inheritance of tolerance. Weed Sci 46:271277.Google Scholar
Theodoridis, G., Baum, J. S., and Hotzman, F. W. et al. 1992. Synthesis and herbicidal properties of aryltriazolinones. A new class of pre- and postemergence herbicides. Pages 125146 in Baker, D. R., Fenyes, J. G., and Steffens, J. J. eds. Synthesis and Chemistry of Agrochemicals III. ACS Symposium Series 504. Washington, DC: American Chemical Society.Google Scholar
Vaughn, K. C. and Duke, S. O. 1991. Mechanisms of resistance. Pages 142169 in Ebing, W. ed. Chemistry of Plant Protection. Volume 7. Herbicide Resistance—Brassinosteroids, Gibberellins, Plant Growth Regulators. New York: Springer-Verlag.Google Scholar
Vidrine, P. R., Griffin, J. L., Jordan, D. L., and Reynolds, D. B. 1996. Broadleaf weed control in soybean (Glycine max) with sulfentrazone. Weed Technol 10:762765.Google Scholar
Weber, J. B., Wilkerson, G. G., and Linker, H. M. et al. 2000. A proposal to standardize soil/solution herbicide distribution coefficients. Weed Sci 48:7588.Google Scholar
Webster, T. M. 2001. Weed survey—southern states. Proc. South. Weed Sci. Soc 54:249251.Google Scholar
Wehtje, G. R., Walker, R. H., Grey, T. L., and Hancock, H. G. 1997. Response of purple (Cyperus rotundus) and yellow nutsedge (C. esculentus) to selective placement of sulfentrazone. Weed Sci 45:382387.Google Scholar