Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:35:48.316Z Has data issue: false hasContentIssue false

Use of Alcaligenes eutrophus as a Source of Genes for 2,4-D Resistance in Plants

Published online by Cambridge University Press:  12 June 2017

E. J. Perkins
Affiliation:
Program in Genetics and Cell Biology, Washington State Univ., Pullman, WA 99164-4350 U.S.A.
C. M. Stiff
Affiliation:
Program in Genetics and Cell Biology, Washington State Univ., Pullman, WA 99164-4350 U.S.A.
P. F. Lurquin
Affiliation:
Program in Genetics and Cell Biology, Washington State Univ., Pullman, WA 99164-4350 U.S.A.

Abstract

The soil bacterium Alcaligenes eutrophus is able to degrade phenoxy herbicides such as 2,4-D [(2,4-dichlorophenoxy)acetic acid]. It has been shown that several degradative genes are located on a large plasmid harbored by this organism. We have demonstrated by HPLC and gas chromatography that 2,4-dichlorophenol is a major metabolite resulting from 2,4-D degradation by A. eutrophus. A portion of the large plasmid carrying the 2,4-D catabolic genes has been cloned and mapped by restriction endonuclease digestion. Overlapping subclones have been produced and were used in conjugation experiments in order to identify the first gene involved in 2,4-D detoxification. Once sequenced, this gene will be transferred to dicotyledonous plant cells using available vector systems.

Type
Research Article
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, F. M. and Crafts, A. S. 1981. Molecular fate of herbicides in plants. Pages 4048 in Mode of Action of Herbicides. John Wiley-Interscience, New York.Google Scholar
2. Bevan, M. W., Flavell, R. B., and Chilton, M.-D. 1983. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184187.Google Scholar
3. Christen, A. A., Kirkpatrick, M. A., and Lurquin, P. F. 1984. Antibiotics and bacterial auxotrophic mutants in the co-cultivation of plant protoplasts and bacterial cells or spheroplasts. Z. Pflanzenphysiol. 113:213221.Google Scholar
4. De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P. 1984. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3:16811689.Google Scholar
5. Don, R. H. and Pemberton, J. M. 1985. Genetic and physical map of the 2,4-D degradative plasmid pJP4. J. Bacteriol. 161:466468.CrossRefGoogle ScholarPubMed
6. Don, R. H. and Pemberton, J. M. 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alcaligenes paradoxus . J. Bacteriol. 145:681686.CrossRefGoogle ScholarPubMed
7. Don, R. H., Weightman, A. J., Knackmuss, H. -J., and Timmis, K. N. 1985. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-D and 3-Cba in Alcaligenes eutrophus JMP134 (pJP4). J. Bacteriol. 161:8590.CrossRefGoogle Scholar
8. Drinkwine, A. D., Bristol, D. W., and Fleeker, J. R. 1979. Separation of 2,4-D and its phenolic derivatives by reversed-phase high-performance chromatography. J. Chromatogr. 174:264268.Google Scholar
9. Faulkner, J. S. 1982. Breeding herbicide-tolerant crop cultivars by conventional methods. Pages 235256 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
10. Fisher, P. R., Appleton, J., and Pemberton, J. M. 1978. Isolation and characterization of the pesticide-degrading plasmid pJPl from Alcaligenes paradoxus . J. Bacteriol. 135:798804.Google Scholar
11. Fraley, R. T., Rogers, S. G., Horsch, R., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galuppi, G. R., Goldberg, S. B., Hoffmann, N. L., and Woo, S. C. 1983. Expression of bacterial genes in plant cells. Proc. Nat. Acad. Sci. U.S.A. 80:48034807.Google Scholar
12. Guerrant, G. O., Lambert, M. A., and Moss, C. W. 1982. Analysis of short-chain amino acids from anaerobic bacteria by high-performance liquid chromatography. J. Clin. Microbiol. 16:355360.Google Scholar
13. Hernalsteens, J. P., Thia-Toong, L., Schell, J., and Van Montagu, M. 1984. An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis . EMBO J. 3:30393041.CrossRefGoogle ScholarPubMed
14. Liu, T. and Chapman, P. J. 1984. Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase. FEBS Lett. 173:314318.Google Scholar
15. Meredith, C. P. and Carlson, P. S. 1982. Herbicide resistance in plant cell cultures. Pages 275291 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
16. Pemberton, J. M., Corney, B., and Don, R. H. 1979. Evaluation and spread of pesticide degrading ability among soil microorganisms. Pages 287299 in Timmis, K. N. and Pukler, A., eds. Plasmids of Medical, Environmental and Commercial Importance. North-Holland Biomedical Press.Google Scholar
17. Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259268.Google Scholar
18. Zambryski, P., Joos, H., Genetello, C., Van Montagu, M., and Schell, J. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2:21432150.CrossRefGoogle ScholarPubMed