Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T17:15:12.675Z Has data issue: false hasContentIssue false

Use of Membrane Potential Measurements to Study Mode of Action of Diclofop-Methyl

Published online by Cambridge University Press:  12 June 2017

John P. Wright*
Affiliation:
DowElanco, 9410 Zionsville Rd., Indianapolis, IN 46268-1053

Abstract

All actively metabolizing cells have an electrical potential difference, negative on the interior, across their membranes. This electrochemical potential gradient is generated primarily by proton-pumping ATPases and provides the driving force for the transport of various ionic and neutral solutes. It is a key element in the energy metabolism of cells. Such factors as alteration of transport processes, energy metabolism, cytoplasmic pH, and membrane permeability have a direct effect on the magnitude of the membrane potential. In a brief survey, diclofop-methyl, diclofop, hydroxydiclofop, CGA 82725, haloxyfop-methyl, haloxyfop, bentazon, dinoseb, 4-hydroxy CIPC, and 2-hydroxy CIPC caused rapid depolarizations of the membrane potential of oat coleoptiles. Chlorsulfuron, dimethipin, propham, CIPC, dicamba, alachlor, metolachlor, napthalic anhydride, and paraquat had no measurable effects. The depolarizing effects of diclofop-reported earlier are used to illustrate the methods and interpretation of plant cell membrane potential measurements. Diclofop and diclofop-methyl affect the membrane properties of sensitive plant cells. Diclofop irreversibly depolarized the membrane potential and increased the proton permeability of sensitive cells but not resistant cells. It also increased the ATPase activity of isolated membrane vesicles. The mechanism through which diclofop exerted its effect is not fully understood. The equipment and techniques required for the intercellular recording of membrane potentials and resistance are described as well as the limitations of the techniques. A method not used in herbicide studies but with great potential for studies of herbicide interactions with membranes is patch clamp. A brief introduction to the methods will be given.

Type
Special Topics
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bates, G. H., Goldsmith, M. H., and Goldsmith, T. H. 1982. Separation of tonoplast and plasmalemma membrane potential and resistance in cells of oat coleoptiles. J. Membr. Biol. 66:1523.Google Scholar
2. Bates, G. W. and Goldsmith, M. H. 1983. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159:231237.CrossRefGoogle ScholarPubMed
3. Bennett, A. B. and Spanswick, R. M. 1983. Optical measurements of ΔpH and Δ in corn root membrane vesicles: kinetic analysis of Cl effects on a proton-translocating ATPase. J. Membr. Biol. 71:95107.Google Scholar
4. Blatt, M. R. and Slayman, C. L. 1987. Role of “active” potassium transport in the regulation of cytoplasmic pH by non-animal cells. Proc. Nat. Acad. Sci. 84:27372741.Google Scholar
5. Briskin, D. P. and Hanson, J. B. 1992. How does the plant plasma membrane H+-ATPase pump protons? J. Exp. Bot. 43:269289.Google Scholar
6. Burton, J. D., Gronwald, J. W., Somers, D. A., Gegenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA-carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34:7685.Google Scholar
7. Cohen, A. S. and Morrison, I. N. 1984. In vitro sensitivity of wheat and oat mitochondria to the selective herbicide diclofop-methyl. Pestic. Biochem. Physiol. 16:110119.Google Scholar
8. Cooke, D. T., Munkonge, F. M., Burden, R. S., and James, C. S. 1991. Fluidity and lipid composition of oat and rye shoot plasma membrane: effect of sterol perturbation by xenobiotics. Biochim. Biophys. Acta 1061:156162.Google Scholar
9. Devine, M. D., MacIsaac, S. A., Romano, M. L., and Hall, J. C. 1992. Investigation of the mechanism of Diclofop resistance in two biotypes of Avena fatua . Pestic. Biochem. Physiol. 42:8896.Google Scholar
10. DiTomaso, J. M., Brown, P. H., Stowe, A. E., Linscott, D. E., and Kochian, L. V. 1991. Effects of diclofop and diclofop-methyl on membrane potentials in roots of intact oat, maize, and pea seedlings. Plant Physiol. 95:10631069.Google Scholar
11. Felle, H. 1988. Short-term pH regulation in plants. Physiol. Plant. 74:583591.Google Scholar
12. Felle, H. and Bertl, A. 1986. The fabrication of H+ selective liquid-membrane microelectrodes for use in plant cells. J. Exp. Bot. 37:14161428.Google Scholar
13. Findlay, G. P. and Hope, A. B. 1976. Electrical properties of plant cells: methods and findings. Pages 5392 in Lüttge, U. and Pitman, M. G., eds. Encyclopedia of Plant Physiology, Transport in Plants. Volume IIA, Cells. Springer-Verlag, New York.Google Scholar
14. Hall, J. C., Romano, M. L., Shimabukuro, R. H., and Devine, M. D. 1992. Electrophysiological differences between diclofop-methyl-resistant and susceptible biotypes of wild oat (Avena fatua L.). Weed Sci. 32:167.Google Scholar
15. Hamill, O. O., Marty, A., Neher, E. Sakman, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches. Pflüegers Arch. 391:85100.Google Scholar
16. Hausler, R. E., Holtum, J. A. M., and Powles, S. B. 1991. Cross resistance to herbicides in annual ryegrass (Lolium rigidum). IV. Correlation between membrane effects and resistance to graminicides. Plant Physiol. 97:10351043.Google Scholar
17. Higinbotham, N., Graves, J. S., and Davis, R. S. 1970. Evidence for an electrogenic ion pump in cells of higher plants. J. Membr. Biol. 3:210222.Google Scholar
18. Hodges, T. K. and Leonard, R. T. 1974. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 32:392406.Google Scholar
19. Gorecka, K., Shimabukuro, R. H. and Walsh, W. C. 1981. Aryl hydroxylation: A selective mechanism for the herbicides, diclofop-methyl and clofopisobutyl, in gramineous species. Physiol. Plant. 53:5563.Google Scholar
20. Holtum, J. A. M., Matthews, J. M., Hausler, R. E., Liljegren, D. R., and Powles, S. B. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). III. On the mechanism of resistance to diclofop-methyl. Plant Physiol. 97:10261034.CrossRefGoogle ScholarPubMed
21. Hoppe, H. H. and Zacher, H. 1985. Inhibition of fatty acid biosynthesis in isolated bean and maize chloroplasts by herbicidal phenoxy-phenoxypropionic acid derivatives and structurally related compounds. Pestic. Biochem. Physiol. 24:298305.CrossRefGoogle Scholar
22. Hoppe, H. H. and Zacher, H. 1982. Inhibition of fatty acids biosynthesis in tips of radicles from Zea mays by diclofop-methyl. Z. Pfanzenphysiol. 106:287298.CrossRefGoogle Scholar
23. Kenyon, W. H., Duke, S. O., and Vaughn, K. C. 1985. Sequence of herbicidal effects of acifluorfen on ultrastructure and physiology of cucumber cotyledons. Pestic. Biochem. Physiol. 24:240250.Google Scholar
24. Leiser, M. and Gromet-Elhanan, Z. 1977. Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state. Arch. Biochem. Biophys. 178:7988.Google Scholar
25. Lucas, W. J., Wilson, C., and Wright, J. P. 1984. Pertubation of Chara plasmalemma transport function by 2(4(2′4′-dichlorophenoxy)phenoxy)propionic acid. Plant Physiol. 74:6165.Google Scholar
26. Matthews, J. M., Holtum, J. A. M., Liljegren, D. R., Furness, B., and Powles, S. B. 1990. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). I. Properties of the herbicide target enzymes acetyl-Coenzyme A carboxylase and acetolactate synthase. Plant Physiol. 94:11801186.CrossRefGoogle ScholarPubMed
27. Morrison, I. N., Owino, M. G., and Stobbe, E. H. 1981. Effects of diclofop on growth, mitotic index, and structure of wheat (Triticum aestivum) and wild oat (Avena fatua) adventitious roots. Weed Sci. 29:426432.Google Scholar
28. Nichols, D. G. 1982. Bioenergetics: An Introduction to the Chemiosmotic Theory. 190 pp. Academic Press, New York.Google Scholar
29. Olson, W. A. and Nalewaja, J. D. 1981. Antagonistic effects of MCPA on wild oat (Avena fatua) control with diclofop. Weed Sci. 29:566571.Google Scholar
30. Orr, G. L. and Hess, F. D. 1982. Mechanism of action of the diphenylether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 69:502507.Google Scholar
31. Powles, S. B., Holtum, J. A. M., Matthews, J. M., and Liljegren, D. R. 1990. Pages 394406 in Multiple herbicide resistance in annual ryegrass (Lolium rigidum): The search for a mechanism. Green, M. E., Moberg, W. K., and LeBaron, H. M., eds. Am. Chem. Soc., Washington, DC. ALS Suppl. Series 421.Google Scholar
32. Ramos, S. and Kaback, H. R. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16:848854.Google Scholar
33. Ratterman, D. M. and Balke, N. E. 1987. Use of tonoplast and plasma membrane vesicles from oat root to investigate herbicidal disruption of proton gradients. Pestic. Biochem. Physiol. 28:1728.Google Scholar
34. Ratterman, D. M. and Balke, N. E. 1988. Herbicidal disruption of protein gradient development and maintenance by plasmalemma and tonoplast vesicles from oat root. Pestic. Biochem. Physiol. 31:221236.Google Scholar
35. Raven, J. A. and Smith, F. A. 1974. Significance of hydrogen ion transport in plant cells. Can. J. Bot. 52:10351048.Google Scholar
36. Reid, R. J., Field, L. D., and Pitman, M. G. 1985. Effects of external pH, fusicoccin and butyrate an the cytoplasmic pH in barley root tips measured by 31P-nuclear magnetic resonance spectroscopy. Planta 106:341347.Google Scholar
37. Rendina, A. R. and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol. 86:983986.Google Scholar
38. Rona, J.-P., Pitman, M. G., Luttge, U., and Ball, E. 1980. Electrochemical data on compartmentation into cell wall, cytoplasm, and vacuole of leaf cells in the CAM genus Kalanchoe . J. Membr. Biol. 57:2535.Google Scholar
39. Secor, J. C. Cseke. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86:1012.Google Scholar
40. Senn, A. P. and Goldsmith, M. H. M. 1988. Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol. 88:131138.Google Scholar
41. Shimabukuro, M. A., Shimabukuro, R. H., Nord, W. S., and Hoerauf, R. A. 1978. Physiological effects of methyl 2-[4(2,4-dichlorophenoxy)phenoxylpropanoate on oat, wild oat, and wheat. Pestic. Biochem. Physiol. 8:199207.CrossRefGoogle Scholar
42. Shimabukuro, M. A., Shimabukuro, R. H., and Walsh, W. C. 1982. The antagonism of IAA-induced hydrogen ion extrusion and coleoptile growth by diclofop-methyl. Physiol. Plant. 56:444452.Google Scholar
43. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27:615623.Google Scholar
44. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1986. Reciprocal antagonism between the herbicides, diclofop-methyl and 2,4-D, in corn and soybean tissue culture. Plant Physiol. 80:612617.CrossRefGoogle Scholar
45. Shimabukuro, R. H., Walsh, W. C., and Wright, J. P. 1989. Effect of diclofop-methyl and 2,4-D on transmembrane proton gradient: a mechanism for their antagonistic interaction. Physiol. Plant. 77:107114.Google Scholar
46. Shimabukuro, R. H. and Hoffer, B. A. 1992. Effect of diclofop on the membrane potentials of herbicide resistant and herbicide susceptible annual ryegrass root tips. Plant Physiol. 98:14151422.Google Scholar
47. Slayman, C. L., Long, W. S., and Lu, C.Y-H. 1973. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa . J. Membr. Biol. 14:305338.CrossRefGoogle Scholar
48. Smith, F. A. and Raven, J. A. 1976. H+ transport and regulation of cell pH. Pages 317346 in Lüttge, U. and Pitman, M. G., eds. Encyclopedia of Plant Physiology. Vol. 2. Springer-Verlag, New York.Google Scholar
49. Spanswick, R. M. 1981. Electrogenic ion pumps. Annu. Rev. Plant Physiol. 32:267289.Google Scholar
50. Stidham, M. A., Moreland, D. E., and Siedow, J. N. 1983. Carbon-13 nuclear magnetic resonance studies of Crassulacean acid metabolism in intact leaves of Kalanchoe tubiflora . Plant Physiol. 73:517520.CrossRefGoogle Scholar
51. Todd, B. G. and Stobbe, E. H. 1980. The basis of the antagonistic effect of 2,4-D on diclofop-methyl toxicity to wild oat (Avena fatua). Weed Sci. 28:371377.Google Scholar
52. Todd, B. G. and Stobbe, E. H. 1974. Weed control in wheat with HOE-23408 in combination with broadleaf herbicides. Pages 422423 in Res. Rep. Can. Weed Comm. (Western Section).Google Scholar
53. Torimitsu, K., Yazaki, Y., Nagasuka, K., Ohta, E., and Sakata, M. 1984. Effect of external pH on the cytoplasmic and vacuolar pHs in mung bean root tips: A 31P nuclear magnetic resonance study. Plant Cell Physiol. 25:14031409.Google Scholar
54. Walker, D. A., Ridley, S. M., Lewis, T., and Harwood, J. L. 1988. Fluazifop, a grass selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254:307310.Google Scholar
55. Wright, J. P. and Shimabukuro, R. H. 1987. Effects of diclofop and diclofop-methyl on the membrane potentials of wheat and oat coleoptiles. Plant Physiol. 85:188193.Google Scholar