Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:06:09.518Z Has data issue: false hasContentIssue false

Utilization of DNA Microarrays in Weed Science Research

Published online by Cambridge University Press:  20 January 2017

Ryan M. Lee
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Patrick J. Tranel*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: tranel@uiuc.edu

Abstract

DNA microarrays are one of the new tools of genomics that have become quite commonplace in plant science research within the past decade. Essentially, DNA microarrays are an extension of the more traditional molecular biology technique of northern blotting. Unlike northern blotting, however, in which the expression of a single gene is monitored, DNA microarrays allow for the simultaneous monitoring of thousands of genes—or, in fact, potentially all of an organism's genes—in a single experiment. Most of the currently available plant microarrays are designed for crops species or the model plant, Arabidopsis; however, a microarray for at least one major weed species is currently available. Furthermore, cDNA-based microarrays prepared for one species can be used to investigate gene expression in related species. As the technology is maturing it is becoming much more accessible, and now is the time to begin utilizing microarrays in weed science research. Questions related to herbicide activity are particularly well suited for a microarray approach. Additionally, gene-expression profiling via microarrays can be used to address questions relating to weed biology, weed–crop competition, allelopathy, parasitic weeds, and biological control of weeds.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, M. D., Soares, M. B., Kerlavage, A. R., Fields, C., and Venter, J. C. 1993. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genet. 4:373480.CrossRefGoogle ScholarPubMed
Alba, R., Fei, Z., Payton, P., Liu, Y., Moore, S. L., Debbie, P., Cohn, J., D'Ascenzo, M., Gordon, J. S., Rose, J. K. C., Martin, G., Tanksley, S. D., Bouzayen, M., Jahn, M. M., and Giovannoni, J. 2004. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J. 39:697714.Google Scholar
Alonso-Blanco, C., Mendez-Vigo, B., and Koornneef, M. 2005. From phenotype to molecular polymorphisms involved in naturally occurring variation of plant development. Int. J. Dev. Biol. 49:717732.CrossRefGoogle ScholarPubMed
Anderson, J., Horvath, D. P., Chao, W. S., Foley, M. E., Hernandez, A. G., Thimmapuram, J., Liu, L., Gong, G., Band, M., Kim, R., and Mikel, M. 2007. Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci. 55:193203.CrossRefGoogle Scholar
Baerson, S. R., Sanchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I. A., Agarwal, A. K., Regosa, M. J., and Duke, S. O. 2005. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemcial benzoxazolin-2(3H)-one (BOA). J. Biol. Chem. 280:2186721881.CrossRefGoogle Scholar
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species and interactions. Science. 301:13771380.CrossRefGoogle Scholar
Bar-Or, C., Czosnek, H., and Koltai, H. 2007. Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet. 23:200207.Google Scholar
Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S. R., Moon, K., Bercham, T., Pallas, M., DuBridge, R. B., Kirchner, J., Fearson, K., Mao, J., and Corcoran, K. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18:630634.Google Scholar
Cadman, S. C., Toorop, P. E., Hilhorst, H. W. M., and Finch-Savage, W. E. 2006. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46:805822.Google Scholar
Chao, W. S. 2002. Contemporary methods to investigate seed and bud dormancy. Weed Sci. 50:215226.Google Scholar
Clark, M., Panopoulou, G., Cahill, D., Bussow, K., and Lehrach, H. 1999. Construction and analysis of arrayed cDNA libraries. Methods Enzymol. 303:205233.Google Scholar
Cui, X. and Churchill, G. 2003. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 4:210.Google Scholar
Doebley, J. and Lukens, L. 1998. Transcriptional regulators and the evolution of plant form. Plant Cell. 10:10751082.Google Scholar
Dong, Y., Glasner, J., Blattner, F., and Triplett, E. 2001. Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl. Environ. Microbiol. 67:19111921.Google Scholar
Drumanac, R. and Drumanac, S. 1999. cDNA screening by array hybridization. Methods Enzymol. 303:165178.Google Scholar
Eckes, P., van Almsick, C., and Weidler, M. 2004. Gene expression profiling, a revolutionary tool in Bayer CropScience herbicide discovery. Pflanzenschutz-Nachr. Bayer. 57:6277.Google Scholar
Finkelstein, D., Ewing, R., Gollub, J., Sterky, F., Cherry, J. M., and Somerville, S. 2002. Microarray data quality analysis: lessons from the AFGC project. Plant Mol. Biol. 48:119131.CrossRefGoogle ScholarPubMed
Galbraith, D. W. and Birnbaum, K. 2006. Global studies of cell type-specific gene expression in plants. Annu. Rev. Plant Biol. 57:451475.Google Scholar
Girke, T., Todd, J., Ruuska, S., White, J., Benning, C., and Ohlrogge, J. 2000. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124:15701581.CrossRefGoogle ScholarPubMed
Horvath, D. P., Anderson, J. V., Soto-Suárez, M., and Chao, W. S. 2006a. Transcriptome analysis of leafy spurge (Euphorbia esula) crown buds during shifts in well-defined phases of dormancy. Weed Sci. 54:821827.Google Scholar
Horvath, D. P., Gulden, R., and Clay, S. A. 2006b. Microarray analysis of late-season velvetleaf (Abutilon theophrasti) effect on corn. Weed Sci. 54:983994.Google Scholar
Horvath, D. P., Schaffer, R., West, M., and Wisman, E. 2003a. Arabidopsis microarrays identify conserved and differentially-expressed genes involved in shoot growth and development from distantly related plant species. Plant J. 34:125134.CrossRefGoogle ScholarPubMed
Horvath, D. P., Schaffer, R., and Wisman, E. 2003b. Identification of genes induced in emerging tillers of wild oat (Avena fatua) using Arabidopsis microarrays. Weed Sci. 51:503508.Google Scholar
Horvath, D. P., Soto-Suárez, M., Chao, W. S., Jia, Y., and Anderson, J. V. 2005. Transcriptome analysis of paradormancy release in root buds of leafy spurge (Euphorbia esula). Weed Sci. 53:795801.CrossRefGoogle Scholar
Jorstad, T. S., Langaas, M., and Bones, A. M. 2007. Understanding sample size: what determines the required number of microarrays for an experiment. Trends Plant Sci. 12:4650.Google Scholar
Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., and Linthorst, H. J. M. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA. 95:19331937.CrossRefGoogle ScholarPubMed
Lai, Z., Gross, B. L., Zou, Y., Andrews, J., and Riesenberg, L. H. 2006. Microarray analysis reveals differential gene expression in hybrid sunflower species. Mol. Ecol. 15:12131227.Google Scholar
Madhou, P., Raghavan, C., Wells, A., and Stevenson, T. 2005. Genome-wide microarray analysis of the effect of surfactant application in Arabidopsis . Weed Res. 46:275283.Google Scholar
MAQC Consortium 2006. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotech. 24:11511161.Google Scholar
Nettleton, D. 2006. A discussion of statistical methods for design and analysis of microarray experiments for plant scientists. Plant Cell. 18:21122121.CrossRefGoogle ScholarPubMed
Raghavan, C., Ong, E. K., Dalling, M., and Stevenson, T. W. 2005. Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis . Funct. Integr. Genomics. 5:417.CrossRefGoogle ScholarPubMed
Raghavan, C., Ong, E. K., Dalling, M., and Stevenson, T. W. 2006. Regulation of genes associated with auxin ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis . Funct. Integr. Genomics. 6:6070.Google Scholar
Rajcan, I., Chandler, K. J., and Swanton, C. J. 2004. Red–far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Sci. 52:774778.Google Scholar
Rensink, W. A. and Buell, C. R. 2005. Microarray expression profiling resources for plant genomics. Trends Plant Sci. 10:603609.Google Scholar
Rishi, A. S., Munir, S., Kapur, V., Nelson, N., and Goyal, A. 2004. Identification and analysis of safener-inducible expressed sequence tages in Populus using a cDNA microarray. Planta. 220:296306.Google Scholar
Roney, J. K., Khatibi, P. A., and Westwood, J. H. 2007. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol. 143:10371043.Google Scholar
Schena, M., Shalon, D., Brown, P. O., and Davis, R. W. 1995. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science. 270:467470.Google Scholar
Southern, E. M., Maskos, U., and Elder, J. K. 1992. Analyzing and comparing nucleic acid sequences by hybridiation to arrays of oligonucleotides: evaluation using experimental models. Genomics. 13:10081017.CrossRefGoogle Scholar
Stewart, N. 2006. Non-target glyphosate resistance in Conyza canadensis (horseweed): as simple as ABC. Proc. N. Cent. Weed Sci. Soc. 61:99.Google Scholar
Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. 1995. Serial analysis of gene expression. Science. 270:484487.Google Scholar
Whitehead, A. and Crawford, D. L. 2006. Variation within and among species in gene expression: raw material for evolution. Mol. Ecol. 15:11971211.Google Scholar