Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T22:55:30.087Z Has data issue: false hasContentIssue false

Weed flora and the relative importance of site, crop, crop rotation, and nitrogen

Published online by Cambridge University Press:  12 June 2017

Torsten N. Andersson*
Affiliation:
Department of Crop Production Science, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
Per Milberg
Affiliation:
Department or-Crop Production Science, Swedish University of Agricultural Sciences, 5-750 07 Uppsala, Sweden
*
Corresponding author. Torsten.Andersson@vo.slu.se

Abstract

Weed species composition and density were recorded in three identical field experiments established 26 to 30 yr ago in southern Sweden. Each experiment compared three 6-yr crop rotations and four rates of nitrogen application. The rotations differed by having (1) a 2-yr rotational grassland, (2) a 2-yr mixed rotational grassland (legume/grass), or (3) spring wheat followed by fallow. Other crops in the rotations were winter turnip rape, winter wheat, spring oats, and spring barley. Using multivariate analyses, the relative importance of site, crop, crop rotation, and nitrogen application rate on the weed flora was determined. The greatest difference was found between sites, and the second most important factor was crop species. Nitrogen application rate weakly influenced the weed flora, while differences between crop rotations were hardly detectable.

Type
Weed Biology and Ecology
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexandersson, H., Karlström, C., and Larsson-Mccann, S. 1991. Temperature and Precipitation in Sweden 1961–1990. Reference Normals. Meteorologi 81. Norrköping, Sweden: Swedish Meterorological and Hydrological Institute. 87 p. [In Swedish with English summary]Google Scholar
Andersson, T. N. and Milberg, P. 1996. Weed performance in crop rotations with and without leys and at different nitrogen levels. Ann. Appl. Biol. 128: 505518.Google Scholar
Andreasen, C., Streibig, J. C., and Haas, H. 1991. Soil properties affecting the distribution of 37 weed species in Danish fields. Weed Res. 31: 181187.Google Scholar
Ball, D. A. 1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 40: 645659.Google Scholar
Banks, P. A., Santelmann, P. W., and Tucker, B. B. 1976. Influence of long-term soil fertility treatments on weed species in winter wheat. Agron. J. 68: 825827.CrossRefGoogle Scholar
Baskin, J. M. and Baskin, C. C. 1990. The role of light and alternating temperatures on germination of Polygonum aviculare seeds exhumed on various dates. Weed Res. 30: 397402.CrossRefGoogle Scholar
Bellinder, R. R., Gummessson, G., and Karlsson, C. 1994. Percentage-driven government mandates for pesticide reduction: the Swedish model. Weed Technol. 8: 350359.CrossRefGoogle Scholar
Böhnert, W. 1981. Ergebnisse von Strukturuntersuchungen in unterschiedlish begüllten Ackerunkrautphytozönosen. Wiss. Z. Univ. Halle 81: 103114.Google Scholar
Brenchley, W. E. and Warington, K. 1933. The weed seed population of arable soil. II. Influence of crop, soils and methods of cultivation upon the relative abundance of viable seeds. J. Ecol. 21: 103127.Google Scholar
Buchli, M. 1936. Oekologi der Ackerunkräuter der Nordostschweiz. Beiträge zur geobotanischen Landesaufnahme der Schweiz, Heft 19.Google Scholar
Chancellor, R. J. 1979. The long-term effects of herbicides on weed populations. Ann. Appl. Biol. 91: 141144.Google Scholar
Dale, M.R.T., Thomas, A. G., and John, E. A. 1992. Environmental factors including management practices as correlates of weed community composition in spring seeded crops. Can. J. Bot. 70: 19311939.Google Scholar
Debaeke, P., Barralis, G., and Marty, J.-R. 1990. Effets de 13 années de rotations culturales irriguées ou non sur la flore adventice d'un blé d'hiver en région toulousaine. II- –Analyse de la flore levée hivernale. C. R. Acad. Agric. Fr. 76: 3745.Google Scholar
De Datta, S. K. and Jereza, H. C. 1976. The use of cropping systems and land water management to shift weed species. Philipp. J. Crop Sci. 1: 173178.Google Scholar
Derksen, D. A., Thomas, A. G., Lafond, G. P., Loeppky, H. A., and Swanton, C. J. 1994. Impact of agronomic practices on weed communities: fallow within tillage systems. Weed Sci. 42: 184194.CrossRefGoogle Scholar
Derksen, D. A., Thomas, A. G., Lafond, G. P., Loeppky, H. A., and Swanton, C. J. 1995. Impact of post-emergence herbicides on weed community diversity within conservation-tillage systems. Weed Res. 35: 311320.CrossRefGoogle Scholar
Erviö, L.-R. and Salonen, J. 1987. Changes in the weed population of spring cereals in Finland. Ann. Agric. Fenn. 26: 201226.Google Scholar
Erviö, R., Hyvärinen, S., Erviö, L.-R., and Salonen, J. 1994. Soil properties affecting weed distribution in spring cereal and vegetable fields. Agric. Sci. Finl. 3: 497504.Google Scholar
Fogelfors, H. 1977. Åkerogräs i Sverige. Uppsala, Sweden: Lantbrukshögskolans Report B19, 4th ed. [In Swedish]Google Scholar
Froud-Williams, R. J., Chancellor, R. J., and Drennan, D.S.H. 1984. The effects of seed burial and soil disturbance on emergence and survival of arable weeds in relation to minimal cultivations. J. Appl. Ecol. 21: 629641.Google Scholar
Froud-Williams, R. J., Drennan, D.H.S., and Chancellor, R. J. 1983. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 20: 187197.Google Scholar
Fuchs, W. and Schmidt, S. 1993. Weed infestation of winter wheat and spring barley in dependence of crop rotation and fertilzation. Kühn-Arch. 87: 2330.Google Scholar
Granström, B. and Almgård, G. 1955. Studies on the weed flora in Sweden. K. Lantbrukshögsk. Statens Lantbruksförs. Statens Jordbruksförs. Rep. 56:187209. [In Swedish with English summary]Google Scholar
Håkansson, S. 1982. Multiplication, growth and persistence of perennial weeds. Pages 123135 in Holzner, W. and Numata, M., eds. Biology and Ecology of Weeds. The Hague, The Netherlands: W. Junk.Google Scholar
Håkansson, S. 1983. Seasonal variation in the emergence of annual weeds—an introductory investigation in Sweden. Weed Res. 23: 313324.Google Scholar
Håkansson, S. 1995a. Weeds in agricultural crops. 1. Life- forms and occurrence under Swedish conditions. Swed. J. Agric. Res. 25: 143154.Google Scholar
Håkansson, S. 1995b. Weeds in agricultural crops. 2. Life- forms and occurrence in a European perspective. Swed. J. Agric. Res. 25: 155161.Google Scholar
Hallgren, E. 1996. Frequencies and biomass proportions of weeds in different crops under different conditions. Swed. J. Agric. Res. 26: 115123.Google Scholar
Hilbig, W. and Bachthaler, G. 1992. Wirtschaftsbedingte Veränderungen der Segetalvegetation in Deutschland im Zeitraum von 1950–1990. 1. Entwicklung der Aufnahmeverfahren—Verschwinden der Saatunkräuter—Rückgang von Kalkzeigern, Säurezeigern, Fuechtzeigern, Zwiebel—un Knollengeophyten—Abnahme der Artenzahlen. Angew. Bot. 66: 192200.Google Scholar
Hume, L. 1982. The long-term effects of fertilizer application and three rotations on weed communities in wheat (after 21–22 years at Indian Head, Saskatchewan). Can. J. Plant Sci. 62: 741750.Google Scholar
Hume, L., Tessier, S., and Dyck, F. B. 1991. Tillage and rotation influences on weed community composition in wheat (Triticum aestivum L.) in southwestern Saskatchewan. Can. J. Plant Sci. 71: 783789.Google Scholar
Jansma, J. E., Van Keulen, H., and Zadoks, J. C. 1993. Crop protection in the year 2000: a comparison of current policies towards agrochemical usage in four West European countries. Crop Prot. 12: 483489.Google Scholar
Jensen, H. A. 1969. Content of buried seeds in arable soil in Denmark and its relation to the weed population. Dan. Bot. Ark. 27: 756.Google Scholar
Johnston, A. E. 1995. The significance of long-term experiments to agricultural research. Pages 1923 in Christensen, B. T. and Trentemoeller, U., eds. The Askov Long-Term Experiments on Animal Manure and Mineral Fertilizers. 100th Anniversary Workshop, Askov Experimental Station, 8th–10th September 1994. Denmark: Ministry of Agriculture and Fisheries, Danish Institute of Plant and Soil Science. SP Rep. 29.Google Scholar
Jongman, R.H.G., ter Braak, C.J.F., and Van Tongeren, O.F.R., eds. 1995. Data Analysis in Community and Landscape Ecology. London: Cambridge University Press. 321 p.CrossRefGoogle Scholar
Jordan, N., Mortensen, D. A., Prenzlow, D. M., and Cox, K. C. 1995. Simulation analyses of crop rotation effects on weed seedbanks. Am. J. Bot. 82: 390398.Google Scholar
Kämpf, R. 1969. Untersuchungen über den Einfluss einer elfjährigen Getreidefruchtfolge auf Bodenfruchtbarkeit, Verunkrautung and Ertrag. Bayer. Landwirtsch. Jahrb. 46: 172190.Google Scholar
Kauppila, R. 1990. Conventional and organic cropping systems at Suitia. IV: weeds. J. Agric. Sci. Finl. 62: 331337.Google Scholar
Koch, F. 1957. Die Unkrautgemainschaften der deutschen Dauerdüngungsversuch auf Ackerland. Bayer. Landwirtsch. Jahrb. 34: 403457.Google Scholar
Koch, W. 1970. Unkrautbekämpfung. Stuttgart, West Germany: Verlag Eugen Ulmer. 342 p.Google Scholar
Liebman, M. and Dyck, E. 1993. Crop rotation and intercropping stragegies for weed management. Ecol. Appl. 3: 92122.Google Scholar
McIntyre, S., Finlayson, C. M., Ladiges, P. Y., and Mitchell, D. S. 1991. Weed community composition and rice husbandry in New South Wales, Australia. Agric. Ecosyst. Environ. 35: 2745.Google Scholar
Muenscher, W.C.L. 1955. Weeds. 2nd ed. New York: Macmillan. 570 p.Google Scholar
Pallutt, B. 1993. Population dynamics and competition of weeds depending on crop rotation and mechanical and chemical control measures in cereals. Proc. Br. Crop Prot. Conf. Weeds 3: 11971204.Google Scholar
Pettersson, O. 1994. Reduced pesticide use in Scandinavian agriculture. Crit. Rev. Plant Sci. 13: 4355.Google Scholar
Pysek, A. 1983. Differenzierung der Unkraurvegetation durch unterschiedliche Düngung mit Stickstoffhaltigen Mitteln. Preslia 55: 173179.Google Scholar
Pysek, P. and Leps, J. 1991. Response of a weed community to nitrogen fertilization: a multivariate analysis. J. Veg. Sci. 2: 237244.Google Scholar
Raab, B. and Vedin, H., eds. 1995. Climate, Lakes and Rivers. Hōganās, Sweden: National Atlas of Sweden. 176 p.Google Scholar
Reuss, H.-U. and Bachthaler, G. 1988. Untersuchung des Einfllusses produktionstechnischer un ökolgischer Faktoren auf die quantitative un qualitative Veränderung der standörtlichen Unkrautflora auf Ackerland. Bayer. Landwirtsch. Jahrb. 65: 167220.Google Scholar
Roberts, H. A. and Chancellor, R. J. 1986. Seed bank of some arable soils in the English midlands. Weed Res. 26: 251257.CrossRefGoogle Scholar
Saavedra, M., Garcia-Torres, L., Hernandez-Bermejo, E., and Hidalgo, B. 1990. Influence of environmental factors on the weed flora in crops in the Guadalquivir Valley. Weed Res. 30: 363374.Google Scholar
Salonen, J. 1993. Weed infestation and factors affecting weed incidence in spring cereals in Finland—a multivariate approach. Agric. Sci. Finl. 2: 525536.Google Scholar
Schweizer, E. E., Lybecker, D. W., and Zimdahl, R. L. 1988. Systems approach to weed management in irrigated crops. Weed Sci. 36: 840845.Google Scholar
Silvertown, J., Dodd, M. E., McConway, K., Potts, J., and Crawley, M. 1994. Rainfall, biomass variation, and community composition in the park grass experiment. Ecology 75: 24302437.Google Scholar
Sumner, D. R. 1982. Crop rotation and plant productivity. Pages 273313 in Rechighl, M., ed. CRC Handbook of Agricultural Productivity. Boca Raton, FL: CRC.Google Scholar
ter Braak, C.J.F. 1987-1992. CANOCO—A FORTRAN Program for Canonical Community Ordination. Ithaca, NY: Microcomputer Power. 95 p.Google Scholar
Thorup, S. and Pinnerup, S. P. 1983. Soil tillage and catch crop by growth of barley. 3. The influence on weed population. Tidsskr. Planteavl 87: 237256.Google Scholar
Wallgren, B. and Rådberg, E.-L. 1989. Crop Rotation With and Without Ley. Växtodling 13. Uppsala, Sweden: Swedish University of Agricultural Sciences, Department of Crop Production Science. 22 p. [In Swedish with English summary]Google Scholar
Zimdahl, R. L. 1995. Weed science in sustainable agriculture. Am. J. Altern. Agric. 10: 138142.Google Scholar