Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T04:37:47.508Z Has data issue: false hasContentIssue false

Amicarbazone Efficacy on Annual Bluegrass and Safety on Cool-Season Turfgrasses

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Stephen E. Hart
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520
Dan Weisenberger
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907
Zachary J. Reicher
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: pmccull@uga.edu.

Abstract

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.

El Amicarbazone tiene potencial para el control selectivo de la Poa annua L. en céspedes establecidos en la estación templada, pero los tiempos de aplicación estacional podrían influenciar su eficacia. Para probar esta hipótesis, se realizaron experimentos de campo en New Jersey e Indiana en los cuales se investigó la eficacia del amicarbazone en aplicaciones de otoño o primavera y se realizaron experimentos en cámaras de crecimiento controlado en que se midió la influencia de la temperatura sobre la eficacia. Los tratamientos en el otoño fueron más dañinos para la Agrostis stolonifera L., y la Poa pratensis L., comparados con las aplicaciones de primavera, pero las aplicaciones de otoño fueron también más eficaces para el control de la Poa pratensis L. En los experimentos en cámara de crecimiento controlado, el daño y la reducción en el peso del material cortado se intensificaron en respuesta al incremento en la temperatura de 10 a 30 C en la Poa annua L, la Agrostis stolonifera L, la Poa pratensis L y la Lolium perenne L. Los resultados sugieren que el uso de amicarbazone para el control de la Poa annua L en céspedes establecidos en la temporada templada, podría limitarse a aplicaciones de primavera, pero el incremento en la temperatura resulta en una mayor actividad en todos los pastos.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beard, J. B. 1970. An ecological study of annual bluegrass. USGA Green Sect. Rec. 8 (2):1318.Google Scholar
Beard, J. B., Rieke, P. E., Turgeon, A. J., and Vargas, J. M. 1978. Annual bluegrass (Poa annua L.) description, adaptation, culture and control. Res. Rep. 352 Michigan.Google Scholar
Busi, R., Vidotto, F., Fischer, A. J., Osuna, M. D., DePrado, R., and Ferrero, A. 2006. Patterns of resistance to ALS herbicides in smallflower umbrella sedge (Cyperus difformis) and ricefield bulrush (Schoenoplectus mucronatus). Weed Technol. 20:10041014.CrossRefGoogle Scholar
Gesch, R. W., Palmquist, D., and Anderson, J. V. 2007. Seasonal photosynthesis and partitioning of nonstructural carbohydrates in leafy spurge (Euphorbia Esula). Weed Sci. 55:346351.CrossRefGoogle Scholar
Hart, S. E. and McCullough, P. E. 2007. Annual bluegrass control in Kentucky bluegrass with bispyribac-sodium, primisulfuron, and sulfosulfuron. Weed Technol. 21:251254.CrossRefGoogle Scholar
Hart, S. and McCullough, P. 2009. Mesotrione applications for annual bluegrass control during Kentucky bluegrass establishment. Agron. Abstr. CD-ROM. Available from American Society of Agronomy. 677 South Segoe Road, Madison, WI 53711.Google Scholar
Johnson, B. J., Landry, G. W., and Karnok, K. J. 1989. Tolerance of bentgrass to amount, frequency, and timing of ethofumesate applications. HortSci. 24:102104.CrossRefGoogle Scholar
Kaminski, J. A. and Dernoeden, P. H. 2007. Seasonal Poa annua L. seedling emergence patterns in Maryland. Crop Sci. 47:775779.CrossRefGoogle Scholar
Lush, W. M. 1989. Adaptation and differentiation of golf course populations of annual bluegrass. Weed Sci. 37:5459.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2004. Relative tolerance of four cool-season turfgrass species to sulfosulfuron. Weed Technol. 18:977981.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2005. Cool-season turfgrass response to bispyribac-sodium. HortSci. 40:15521555.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2006. Seasonal effects on annual bluegrass control in creeping bentgrass with bispyribac-sodium. Weed Technol. 20:722727.CrossRefGoogle Scholar
Lycan, D. W., Hart, S. E., and Murphy, J. A. 2005. Annual bluegrass (Poa annua) control in Kentucky bluegrass (Poa pratensis) with sulfosulfuron. Int. Turf. Soc. Res. J. 10:12221226.Google Scholar
McCullough, P. E. and Hart, S. E. 2006. Temperature influences creeping bentgrass (Agrostis palustris Huds.) and annual bluegrass (Poa annua L.) responses to bispyribac-sodium. Weed Technol. 20:728732.CrossRefGoogle Scholar
SAS. 2007. SAS version 8.02. Cary, NC: SAS Institute.Google Scholar
Senseman, S. A. 2007. ed. Herbicide Handbook. Lawrence, KS: Weed Science Society of America. 128 p.Google Scholar
Shortell, R. R., Bonos, S. A., and Hart, S. E. 2007. Response of Kentucky bluegrass cultivars and selections to bispyribac-sodium herbicide. HortSci. 43:22522255.CrossRefGoogle Scholar
Sprague, H. B. and Burton, G. W. 1937. Annual bluegrass (Poa annua L.), and its requirements for growth. New Jersey Agricultural Experiment Station Bulletin 630. New Brunswick, NJ. Pp. 124.Google Scholar
Toler, J. E., Willis, T. G., Estes, A. G., and McCarty, L. B. 2007. Postemergent annual bluegrass control in dormant nonoverseeded bermudagrass. HortSci. 42:670672.CrossRefGoogle Scholar
Wilson, R. G. and Michaels, A. 2003. Fall herbicide treatments affect carbohydrate content in roots of Canada thistle (Cirsium arvense) and dandelion (Taraxacum officinale). Weed Sci. 51:299304.CrossRefGoogle Scholar
Yelverton, F. 2008. Spring transition from perennial ryegrass to bermudagrass and Poa annua management. Online. http://www.turffiles.ncsu.edu/PDFFiles/004633/Southern_California_Golf_Course_Superintendents_Association_Manhattan_Beach_CA.pdf.Google Scholar
Yu, Q., Nelson, J. K., Zheng, M. Q., Jackson, M., and Powles, S. B. 2007. Molecular characterization of resistance to ALS-inhibiting herbicides in Hordeum lepordim biotypes. Pest. Sci. 63:918927.CrossRefGoogle ScholarPubMed