Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:41:18.485Z Has data issue: false hasContentIssue false

Canola (Brassica napus) Response to Simulated Sprayer Contamination with Thifensulfuron and Thifensulfuron:Tribenuron (2:1)

Published online by Cambridge University Press:  12 June 2017

David A. Wall
Affiliation:
Agric. and Agri-Food Canada, Unit 100–101, Route 100, Morden, MB, R6M 1Y5
Douglas A. Derksen
Affiliation:
Agric. and Agri-Food Canada, Box 760, Indian Head, SK, SOG 2K0
Lyle F. Friesen
Affiliation:
Dep. of Plant Sci., Univ. of Manitoba, Winnipeg, MB, R3T 2N2

Abstract

Greenhouse and field studies were conducted in 1992 and 1993 in Manitoba and Saskatchewan to determine the effect of simulated sprayer contamination with thifensulfuron and thifensulfuron:tribenuron (2:1) on canola. In greenhouse studies, canola was more sensitive to tribenuron and thifensulfuron:tribenuron (2:1) than thifensulfuron. Thifensulfuron was more phytotoxic to canola when applied with Merge (50% surfactant blend and 50% petroleum hydrocarbon solvents) than with Agral 90 (non-ionic spreader and activator) at recommended adjuvant concentrations {1% and 0.2% (v/v), respectively}. In the field, canola injury tended to be more severe when thifensulfuron was applied with Merge than with Agral 90, but yields did not differ significantly between adjuvants, Thifensulfuron and thifensulfuron:tribenuron (2:1) at rates as low as 0.1 g ai/ha severely injured canola, delayed flowering, and reduced yield and subsequent seed germination. Thifensulfuron at 0.1 to 0.15 g/ha in mixtures with sethoxydim plus Merge reduced yields up to 61%.

Type
Research
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992. Alfalfa (Medicago sativa) response to simulated herbicide spray drift. Weed Technol. 6:956960.Google Scholar
2. Al-Khatib, K., Mink, G. I., Reisenauer, G., Parker, R., Westberg, H., and Lamb, B. 1993. Development of a biologically-based system for detection and tracking of airborne herbicides. Weed Technol. 7:404410.Google Scholar
3. Bailey, J. A. and Kapusta, G. 1993. Soybean (Glycine max) tolerance to simulated drift of nicosulfuron and primisulfuron. Weed Technol. 7:740745.Google Scholar
4. Beyer, E. M. Jr., Duffie, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. p. 117189 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Vol. 3. Marcel Dekker Inc., New York.Google Scholar
5. Blackshaw, R. E. 1989. Control of Cruciferae weeds in canola (Brassica napus) with DPX A7881. Weed Sci. 37:706711.Google Scholar
6. Cornes, D. W., Maurer, W., Ryan, P., du Rieu, A. G., and Iwanzik, W. 1991. Degradation behaviour of triasulfuron in the soil. Results of replanting studies and bioassays. Proc. Brighton Crop Prot. Conf.—Weeds. 2:543550.Google Scholar
7. Derksen, D. A. 1989. Dicamba, chlorsulfuron, and clopyralid as sprayer contaminants on sunflower (Helianthus annuus), mustard (Brassica juncea), and lentil (Lens culinaris), respectively. Weed Sci. 37:616621.Google Scholar
8. Edmund, R. M. and York, A. C. 1987. Effects of rainfall and temperature on postemergence control of sicklepod (Cassia obtusifolia) with imazaquin and DPX-F6025. Weed Sci. 35:231236.Google Scholar
9. Friesen, G. H. and Wall, D. A. 1991. Residual effects of CGA-131036 and chlorsulfuron on-spring-sown rotational crops. Weed Sci. 39:280283.Google Scholar
10. Harker, K. N. 1992. Effects of various adjuvants on sethoxydim activity. Weed Technol. 6:865870.Google Scholar
11. James, T. K. and Rahman, A. 1992. Effect of simulated rainfall and adjuvants on the phytotoxicity of sulfonylurea herbicides. p. 229232 in Combellack, J. H., Levick, K. J., Parsons, J., and Richardson, R. G., eds. Proc. 1st Int. Weed Control Congr., Vol. 2, Melbourne, Australia, Feb. 17–21.Google Scholar
12. Manitoba Agriculture. 1993. Guide to Crop Protection 1993. Manitoba Agriculture, Carman, Manitoba. 193 p.Google Scholar
13. Moyer, J. R., Esau, R., and Kozub, G. C. 1990. Chlorsulfuron persistence and response in nine rotational crops in alkaline soils of southern Alberta. Weed Technol. 4:543548.Google Scholar
14. Nalewaja, J. D. and Woznica, Z. 1985. Environment and chlorsulfuron phytotoxicity. Weed Sci. 33:395399.CrossRefGoogle Scholar
15. Ogilvy, S. E. 1989. The effect of timing of swathing on the quality and yield of winter oilseed rape. Aspects Appl. Biol. 23: 101107.Google Scholar
16. Robertson, J. A. and Morrison, W. H. 1979. Analysis of oil content of sunflower seed by wide-line NMR. J. Am. Oil Chem. Soc. 56:961964.Google Scholar
17. SAS Institute, Inc. 1985. SAS User's Guide: Statistics. Version 5. SAS Inst., Inc. Cary, NC. 956 pp.Google Scholar
18. Schroeder, G. L., Cole, D. F., and Dexter, A. G. 1983. Sugarbeet (Beta vulgaris L.) response to simulated herbicide spray drift. Weed Sci. 31:831836.CrossRefGoogle Scholar
19. Wall, D. A. 1994. Potato (Solanum tuberosum) response to simulated drift of dicamba, clopyralid and tribenuron. Weed Sci. 42:110114.Google Scholar
20. Weiderhamer, J. D., Triplett, G. B. Jr., and Sobotka, F. E. 1989. Dicamba injury to soybean. Agron. J. 81:637643.Google Scholar
21. Zhao, C. C., Teasdale, J. R., and Coffman, C. B. 1990. Factors affecting the activity of thifensulfuron. Weed Sci. 38:553557.Google Scholar